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ON' THE NUMERICAL PROPERTIES OF THE M=P GENERALIZED
INVERSE ALGORITHMS

1. Introduction

A large number of algorithms for the calculation of a ge~
noraltzed inverse has been suggested in recent, yaara. In this pa= .
‘per we shall confine our attention to the algorithme = of the

Moore~Penrose generalized inverse (the M-P generalized inverse),

These algorithms in turn can be divided. into two classes: non-i-
terative and iterative algorithms, p

In formulating non-iterative algorithms  for the calculation

of the M-P geneéralized inverse A'  of the real matrix A with m

"¢fows . and n columna, i.,e. A€ R™*"  (where A" is such o ma(tt;

that AYAAY = A*: AATA = Ap (AA*) w AA*; (A®A)" e A%A) the face

tortzation princxpla is used. This principle consists in the
factorization of given matrix A with rank(A) = k  into the pro-'

duct of two (or more), i.e.

© o omxk. k_xn 35
(1.1) AwDF, 0 ¢« R %, Fe R.° . rank(D) = rank(F) = k.

Oue to . xh- propertioo of the M—P genaralizad 1nverae ‘snd the
dofintttons of D, F we havo ' : '
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(1.2) : A’ = F'0°,

(1.3) #* = F7 (e, 0 o (0%0)" Y0,

_ Three types of factorizations are’ vory well known, Tho firet
type hes the form .

ey s A=,
nxk
where L€ R © 1a 2 lowor trapozoidal matrix with nnttn on the

diagonal and zeros above the diagonal, U e Rko 5 tp the upper
tropezéidal, Therefore, due to (2,2), (1.3) 1t ie '

(1.4) & Ao “VU-OLQ"- u\ (Uu‘)-.i (L’L‘).IL.. ;
The secand typo‘haa the form

(ray.: -l A =gs,

mxk . » Y ; . ;
Q&R o Q°Q = Iy ye $ 1e the upper triangular, end
U, ‘ £ ! e &)

R0y, s At s'(ss')‘* « 's"q‘
(the dacompoottton (fz) can be done by the ‘use of Housholdar tra- :

aforaationo or tho -odzfiod Gra-Schntdt proctduro)..
The third typo hac the form

AR s uaAv,
: maxk axk Lt 3, ; k_xk AR A

veRrR 9 va=R. % A=diag (*1' TP a ) - ® 5 °. u'u‘ .
= v v = I(k ), 1- th. diagonol matrix of. nonz-ro oqyar- roott cf

-eigen values of A*A (or AA b and :.:

+

(1-6) : : b' 'AA‘ -V A u-'. }

The factoriiatipn (t1 ) 10 usod,~ a-ong othorl. in colculottng tbe,
e P genoraiized invcrse. ‘when the Gaues elimination: wethod -tth A
~complete pivoting, 18 used: (see the deocriptton ot the - algge
rithns AWMEL and GEINW). ; o e
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The factorization (f2) 1s used, among others, 4in the con=
struction of the algorithm of Luecke [3].

The factorization (f3) is used, among others, 4n the for=
mulation of the algorithm SVDZ described in this paper,

Iterative elgorithus (to which the studied algorithm ABI be~
longs) are baned on the 1dea of 1torattvo nonotonic two-oidid op=
proximetions of Schultz,

The existence of the grear. nunbar of the elgorithms for cal-
culation of the Moore~Penrose generslized inverse of the matrix
inplies the need of the comparative study of their properties. In
the peper the asuthors give a description of fgur such slgorithms
and try to compore them by use of the Monte-Carlo experiments.
The measures of algorithm precision, ‘used 4in the experiments,
were based on four conditions which define the Moore-Penrose
;generalized inverse. They are of the form:

< y 5 a = e
) IMQA-A' ‘ . )'lA’M’-A‘l
R e R o |
TS Ly (ML

X e e Mg o ST e e 2 S0

% 1aad)® - aafl 1(ATA) - atal
c) = - ‘ " ‘ '
Laag LN U REIAIR 1w} SN

P i R \ v W 53 - "

- where A; denotes, given by the i-th algoritha, estimate of the
“ =P generalized inverse of the metrix A (1 = 1. tsvs 4) ond do~
_'notoe Euclidean norm, ; s SNy
HE aootdoo this, we ;ry to enawer the quo‘tton how nuch the
. changes 4in $11 conditioutng of the inverted matrix . influence
~the form of the gonerallzod 1nvcroo of thie natrt;, realized by
" meons ‘of the i=th algorithn. This hes bean donol by mesns of a
¥ conpgrtoon of the Eucltdoan norus  of the P gonoraltzed invere
ses A; 1=, 4.0, 4 for vartouo dogroon of 111-cond1tion1ng :
of tho 1ﬂVortod natrtn A.t,, ¥ ey

LR S
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2, The Description of the Algoruhm

Wa confined our analysis to ono iterative algorithm, marked
here os ABI, end three non-iterative AVMEL, GEINY, SVDZ bas-
ed on the ides of the factorization of the g!.vorf matrix A of
roank ko. Algorithms AVMEL end GEINW are besed on the face
torizetion of the form:

A, AeR™,  rank(A) « kog ain (m, n),

where L @ l"k" is lower trepezoidol matrix with unite 4in main
disgonsl and zoros sbove 1t, U & RX0*® 15 upper trepezoidal
matrix and A* » U*LY = (U7 TR(LL)AL,

Algorithm SVOZ is based on the idea of the sepectral facto~
rizetion of the form

axk nxk k_xk
AsUAV , Ve R %2 var * Aeg?® @ V'V s U0 e T

where A denates the diagonal matrix of nonzero square roots of
the singular velues of the matrix A°A, and A" = vy,

Below we give & concise description of the successive steps
of tha Moore-Penrose invarse conputulon by means of each from

the onalyud algorithme,

2.1, 'Aljoruh- 48T (cf, Ben-Israel [2])

§1: Uung one of the algorithms for dealing with eigenvelue
problem (o.g. the method of Jacobi) ﬂnd tho greatest eigenvalue _
of the matrix A"A and denote it by A. '

§21 Find such & value a that

A 2
0o <a S Yhpax
S3: Form x w aA’,
S4; For J = 1. 2.., COMpPUta

iy Kyt = xJ_,(_zx - AXy g de
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until

i x A
-—1———-4——— <N
Ix .l
where 1, denotes the rank of the accuracy of the 1terattve‘ pPro=
cess, If the convergence criterion is satisfied for j = 3= then
put Aty = sz'
2,2, Algorithn AWMEL (cf, Wi llner [9])

S13: Using the row elementary transformations reduce the in-
verted matrix A € R™"  to the normal Hermitean form, i.e. find
the matrix H = (8) H e Rmxn' G e Rk i ko = ronk (A) = rank
(H), where: :

+ first k  rows of matrix H are nonzero rows and elements

of the raows ko 41, ..., n are all equal zero, °

< ooo(nk '
ves the only nonzero element in column ny
1 in the i-th row.

S$2: Using the matrices A and H from matrix
ing to the schame Y

) N ¢ ¢ e £ S 7Y

whers - P(1), A(D),
columns of the matrices P, A and H; 1
with i=-th component equal 1,

83; Compute A* = G°(P” AG')'lP

tho-firet nonzero element of the i=~th row of
(1L B D SO ko) is equal 1 and belangs to column n,

PeRr °

the batrix

ﬂ1< nz <

of the matrix H is

mxk ;
accord=

I = 1, vees N,

i = 1, ceey k

°0

H(J) denote respectively the i=-th and J-thv
denotes the unit vector



10 Jozaf Bilalas, ¥Wladystaw Milo, Zbigniow Wu,llewskd

2.3. Algorithm GEINW (cf, Warmus [7])

S51: Using row and column elementary transformations  reduce
the inverted metrix A € R™" of rank k, € min (m, n) to the ma~
trix of the form

0\

N

I

D

0 0
making respective row traonsformations on the matrix G : = I. and
column tronsformations on the matrix F 1 = I,

521 Using transfucmed motricee G ond F, obtained in Si, com=
pute v )

-1 . = '] "'1
Jieel (Pn.ni ‘n.u—n)' vV e(r‘r) "ra,

F-l .(b?cnc'-".-o) Us= W(P'(‘fwit

Nem,n
W= UV

and form the'matrix

Ik s vkocﬂ-k

Y . l’.'..l‘...ll:'.l...l......I... P
U T
n-ko,ko : n-ko.n-ko
53%: Computs A = FYG,

2.4, Algorithm $v0Z (cf. G o.l'g“b. Reinech (8]

Milo, Wensslewwnki -[8])

51: Using one of the algorithms for dealing with eigenvalue
proplem (e.g. the method of Jacobi) find the eigenvalues lf
wd raspective eigenvectors v, of the matrix A'A  of renk k.

8% Order eigenvelues, obtained in 51, in & decreasing man-’
7Y P O 1?1. P ka and form matrices

o
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g ” :
A = diag {K: s Y Tt )’
1 k

V"(\"l, “ewa vrk)O

..5 - v
S3: Compute A’ « V ATTVIAT, .

3, Numerical Analysis o
e I e B

&

-
the Algorithms’ Properties

= ‘: -

The comparisons of the properties of the four algorithms dos-
cribed obove, were confinod to only one specific numerical
structure of the inverted matrices, The analysis comprises the
symmetric and rectangular matrices, and for cach type of the
matrices there were distinguished various degrees of ill-condi-
tioning and collinearity, Easch motrix A was genarated in two
stages, At first there was generated noneingular tridiagonals
basis matrix with units on diagonals and zeros elsewhers (deno-
ted further as T). 1In the next stage the matrix T was enlarged,
Ill-conditioning was introduced through symmetric enlargement of
the matrix T by columns and rows differing from respective co=
lumne and rows of the matrix T only in main-diagonal element by
near zero value €. Singularity, in the case of symmetric matrices,
was introduced through enlargement of the matrix T by columns
and rows being the linear combinations of the successive two co-
lumns and rows of this matrix. Rectengular motrices were obtain-
ed by adding to matrix T its columns with increased by the con-
stant value 3 elements of the last row, and by adding columns
being linear combination of the succaessive two columns of the
matrix T. Such a generation of the matrix A will fix in an
erbitrary way the numbar of linearily dependent columns (the de-
gree of the singularity of the matrix A) as well &5 the number
of columns being the carrier of ill-conditioning and its magni=
tude. At the same time the general structurs of the inverted ma-
trices 6till remains the same, Describing the results of the
experiments we will use the following parametric note characte-
rizing the structure of the inverted matrix A
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vwhare s .

m,r,k = respectively the dimensions and rank of the matrix A,

1,€ =~ rospectively the number of colunns which ere the car=
rier of 1lle=conditioning and parameter defining the dagrse  of
this 1ll-conditioning,

CyeCpy = coeffictients of the linear combination of the basis
colunns of A,

@ =~ constant value used in forming rectangular matrices

in the ‘way described in the text above, '
At first we considersd the motrix of the forw

Ay = Als1, 11, 8, 0, 0, 0, &, 0)

1.0, o singular but welleconditioned synmetrical matrix, For such
defined matrix A all analysed algorithms characterized the sane
procision Lut iterative slgorithm ABI appearad the most time=
~consuming and algorithm AWNEL the fostest of them, Considering
matrices A, = A(21, 11, 8, 0, 0, 0,0001, 1) and A, = A (237 11,04
0, 3, 0,31, 1) we statred rather small changes in the values of
]A}SE and |l A;ﬁ in comperison with the value of l’A;H which
{ndicates the ctable perfermance of the algorithms with regard
to unsignificant changés in tho values of elements 1in nonbasis
columns of the inverted matrix A, The next group of analysed
matrices cunsisted of the singular symmetrical wmatrices whilch
characterized the various degree of {ll-conditioning, 1.6. (R
trices of the form

ALy, 21, 8, 1,£,-2, %, 0) = AL g
where: 1 = 1,2,3 and £ = 0,01, 0,001, 0,0001,

For such a definsd group oi inverted matrices we observed sube-
ctential differences between respective slgorithms in dependence

on the degree of jll=conditioning of these matrices, In the’
case of small level of ill-conditioning (€ <€ 0.01), despite the
nunber of columns being its carcier (1'=1,2,3), the results of

sumputations for all algorithes were, for each valus of 1, very
similar (JA*)] conputed by mesns of respective algorithens differs
only in the fourth place after point), The precision measures, we
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had accepted,
which were done

indicate
by SVOZ,

« 0,0001 computations done by mesns
rent form of [ A*f

opartivs
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of SVDZ led

in comparison with thege obtained by
of algorithms AUMEL, ABI and GEINW (cf,

Table 1.

a bit leas precision of tho computorions
Just in the case of €

= 0,001 and € =
to quite diffe~
neoans

The volun of

IA( | declined from 164,4545 to 2,92117 when the value - of
5V02Z

the ill-conditioning parameter € declined from 0,04

to 0.003 and

remained stoble despite further decline in €, Yet, the valuos
of | AABI‘ f A;AHELH and VANLINWE increased ell the tine
proportionally to the declias in €.
Table 1
The influence o{ ill-conditioning on the value
of | A*] obtained by means
of algorithms AWMEL, ABI, &VDZ and GEINW
Algo- . The value of coefficient € ?
Rshy 0.1 0,01 1' 0.001 0.0001
I
AVIMEL D 14,.93864965 (147, 427328090 |1 475,1119247314 d06.3744131#
ABI 14,93865005 1147,42794870 11 475,96250826 (14 761,67377477
ASVDZ2 14,9%865165 (147,428723272 3. 31490181 3. 31490505
GETINW 14.9386500% (147,42794849 |1 475,56255019114 761.67157197
1l =3
AVMEL2 26,71292776 (267,83145887 |2 679,08125581 |27 992,02097376
ABL 26,71292755 (267.83201591 |2 680,03565124|26 802,17216364
ASVYDZ2 26.71292739 | 267, 83226808 1,82713458 1.82718448
LCEINW 26, 71292756 [267.83201613 |2 680,03567281 |26 B02,17405431

Despite such substantisl differences between

the wvalue of

lA“VDZI and the values of | AABIH 'AANMELI i AGEIN“" accep tod
measuros of the computations® precisicn indicete a similar and
quite good precision of all the algorithms (cf, Table 2).

The comparison of values of the precision messures for va=
rious values of € indicate a small decline in precision when the
value of £ declines, The most significant decling appeared in
the case of the algorithm AWMEL, On the other hand, the  best
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T2 e 2
The influence of ill-conditioning
of the inverted metrix A on the computational precision
of the respective algorithms
Precision measures i ]
AL90s | Jantanal | Latantoa’] [1(aa*) Toant] (a*a)Tea*al
ial I a*l i an*l I A*Al
. €E=0,1

AWMEL2 | 0,00000001 | 0.00000003 0.00000001 0.00000006
ABI 0.00000000 | 0,00000001 0.,00000000 0,00000000
ASVDZ2 | 0,00000001 | 0,00000011 0.00000000 0,00000011
GEINW 0,00000000 | 0,00000000 0.00000000 0,00000000

€ = 0,01
AIMEL2 | 0.00000634 | 0,00000379 0,00000102 0.00001191
ABI 0.00000000 | 0.00000013 0,00000000 0.000000 30
ASVDZ2 0.00000174 | 0,00000532 0.00000073 0.00001077
GEINW 0.00000000 | 0.00000000 0.00000001 0.00000000

£ = 0,001
AWMEL2 | 0.00027984 | 0,00057636 0.00013251 0,00045671
ABI 0.00000002 | 0,00000118 0.00000004 0,00000712
ASVDZ2 | 0,00004995 | 0,00000000 0,00000000 0.00000000
GEINW 0.00000005 | 0.00000001 0.00000004 0,00000004

£ = 0,0001
AVMEL2 | 0,01744044 | 0,02406894 0.00361627 0.04149807
ABI 0.00000012 | 0,00000987 0,00000027 0.00257619

ASVDZ2 | 0,00000499 | 0,00000000 0.00000000 0,00000000 -

GEINY! 0.00000032 | 0,00000014 0.00000050 0.00000028

precision characterized algorithm GEINV,
compared with others,

nearly €~8 times

ite precision woe rather high.

The last group of inverted motrices consists
matricee with different degree

ered nine matrices of the form

of

Algorithm ABI was,
more time-consuming, but

rectangular
of ill-conditioning, We consid-
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A(6,11,4+41,1,€,2,1,1) = Al'c

whers: L = 1,2,3; £ = 0,01, 0,001, 0,0001.

In the case when only one column wes the carrier of dill=con~
ditioning, all the slgorithme were charecterized by high precis-
eton and sll of them led to M-P generalizod inverses of Simi~
lér norms. In the case when two or three columns were* the car=
riers of ill-conditioning, the situation was similer to  that
concerning syrmetrical matrices, The highest precision was cho=
racteristic of algorithm GEINW and the worst one of algorithm
AVIIEL,

4, Final Romarks

Our investigations allow us, despite their very limited sco-
pe, to formulate some remarks concerning the analysed algorithms
for computation of M=P inverees.

1° 1t te supposed that from the numerical point of view, mea-
sures of algorithm’e precision based on four Moore-=Penrose con=-
ditions which were accepted in the peper do not allow to indica-
te uniquely the best numericel approximation of the generalized
M-P inverse of the ill-conditioned matrix.

2° A1) algorithme which were analysed except SVDZ were cha=
racterized by small robustness on high ill-conditioning of the
inverted matrix, ¢

3° From the computations” precision point of view ealgorithm
GEINY wes the best and algorithm AWMEL wss the worst, but at
the same time the fastest among the four algorithms being analys-
ed,

4° The ill-conditioning of high degree caused 2 decline in
the algorithme’ precision, except in the case of SVDZ,

5° From Table 1,2 it is seen that the SVDZ 4is stable both in
the sense of ﬂﬁ; | as well as in the sense of the degree of fule
filment of the four conditions defining the M-P generalized ine
verse A" when the ill-conditioning is increasing (that is when
£ is declining from € = 0.001 to £ « 0.0001), It is caused,
precbably, by the inherent properties of Jacobi procedure and the
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.

assumption that U, = A\lilx"1 where U = (U iy, ), U'U = W “Tny

u 01 - 1(k yi Vo= (v1 PV, ), V'V a2 W = x(n). v1v1 - I(“o)' Far

drawing doctstve conclusions about instability end its causes we
are carrying out more structural experiments,
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0 MASNOSCIACH NUMERYCZNYCH ALGORYTMO!W MOORE “A=PENRDOSE A
UOGOLNIONYCH ODWROYNOb‘CL MACIERZY

Preca zawiera krdtki opis trzech nieiteracyinych i jednago i-
teracyjnego algorytmu obliccania uogélnionych odurotncsci ~dane
moclerzy ~* oraz rezultatdw ekesperymantdw numeryczuych zmiarza=
jecych do ustalenina niektérych numerycznych wiasnodci tych algo=
rytmdw, Stwierdzono, iZ )

a) wezystkie analizowane algorytmy, oprécz bazuiqcego na Zmo-
dyfikowanej dekompozycji wartofci wiainaj, wykazywaly mola od-
pornoéc na zle uwarunkowantie odwrncunei macierzy;

b) najszybszy algorytn w/illnera byt najmniai precyzyjny:

¢) algorytm GEINV Warmusa byi nojbardzic] precyzyiny  pod
wzglgdem spetnienia citerech warunkdw okredlajacych uogdlniony
odwrotno$c macierzy A";

d) w przypadku wzrastnjace?o zlego uwarunkowonis najbgrdzie}
stabilny okazal sig (w sensie .I i apalnienia dofinicjl AY) algo-
rytm oparty na zmodyfikowanej dokompozycji wartodci wlasned.



