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SOME PROBLEMS OF ROBUST ESTIMATION
IN THE CASE OF LINEAR MOUDELS
PART 1: CHARACTERIZATION OF ROBUSTNESS

1. Introduction

We limit our attention to the robuctness of point estima=
tion methods for the following linear models

noxk

Ny m (R, 8,7 = XB+ 2, ky =k, ngun, B = xv(xp.a’r)),

N, = (R g, ¥ = Xp+Z,koakyng=n, P = o (X3, 0)),

where _
QPXR - the set of real nxk matrices, >
S = (U,F,P) - a probability space with the co.p‘lﬁot. measure
P,PU)= 1 % - Borel-6=field of subsets of set U,U - an elemen=
tary set of events, :
ko = rank{(x), n, = rank 5(v), XeR
3(Y) = dispersion of random vector Y, 1.e.
£ - expectation operator,
"PY- w(xp,n)'-'n-duonuonal randon_voctor has n-dimensional
normal distribution with E2(Y) = X8 and B(Y) = a%
The concept of robustness wes introduced into statistics by
Box, Anderson [5] and it was concerned with the robu=

stness of tasts, A more fornal'9r100ntagion of the robustness

nxk‘
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$AaG8 WA AnEroduced by Huber [9,120,121], Hempel

(6, 7], Bickel [4), Berger [3], Barto-
czyhski, Pleszeczynska [1], Zielih-
s ki [20], Huber, cCarol [12)], ond Rou s-
seeuw LIB].

2. Robustness: Intuitive and Heuristic Heontng

The broad and intuitive meaning of robustnees should be cha-
racterized more formally 4in order to achieve qreater precision.
Posing the following questions should help in it,

Q1) "hat 4s robust?

G2) Against what something 1s robust? (ageinst what kind of
chenges (deviation, perturbation, disturbances, transformations)
this something is robuset)?

03) In whet properties of this something tho robustness is
naonifestod? (with respect to which propcrtiol the robustness is
manifested?)

Q4) With respect to which qualitative nonouro. of porforuon-
ce this something is robust?

Q5) How to measure rohustness?

06) vhat do we loose in return to robustness?

_Q7) To what degree something is robuet?

08) whether the concepts "stability of something” and “ro-
bustness of something” are different in meaning?

Brief qualitative answgri are as follows:

Ad Q1) Rebust is:

#) a statistical (econometric) method of estimation, predic-
tion, testing (an estimator, & test, a predictor),

h) 8 statistical model,

c) & numericel algorithm of a given method,

Ad Q2) Ve postulate the robustness of a given method (or an
algorithm) against the changes of s _

chl) assumptions of stochastic structure of the given stati-
sticzl model,

ch2) assumptions of nonstochastic structure of the given mo-
del,

ch3) assumptions of both structures.
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Possible changes (chi) concern:

chl.1) probability measures,

chl.2) shifts 4in the parameter value of probability distribu-
tion,

chl,3) replacing standard distribution by a superposition of
distributions belonging to different clagsecs, =

chl,4) distances botween distributions,

Possible changes (ch2) concern:

ch2.,1) levels of bad-conditioning of dota matrix,

ch2,2) shapes of relationships (e.g. from linear 4nto non~li~-
near).

Possible changes (ch3) concorn the olements of crosseclossie
fication of (chi) and (chz).

Ad Q3) Wo postulate thot the rabustness should manifest in the
invarionce (against changes (chi)=-(ch3)) of one or more of  the
following properties:

pl) unbiasedness,

p2) efficiancy,

p3) precision,

p4) consistency,

p5) sufficiency,

p6) stability, .

p7) ehape of distribution, ‘

Confirming or not-confirmtng the invariance of some @numaratw
Od'propertioo is nothing more then @ qualztativa analysts. It
helps to say that something is or is not robust in a sense aﬁ& no=
thing more. :

Ad Q4) Vie postulate that the robustness will nanifoat in the
“relative stability of the ronge for the followtng functians of
. 8tatisticsl procedures: : :

f1). totsl bias,

f2) efficiency,. e

£3) total mean square orrof.

f4) stendard error, :

f5) average relative absolute predlctton error,

£6) weighted total sum of prediction errors, -

f7) speed of convergence of iterative statistical procoduroo,

fB) deviation between the p-th quantllos of diotributtons " of
ltatiotics, :
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f9) distances botween probablility distributions of statistics
(measured by distances betvoen distribution functions or cherace
toristic functions or moment generating functions),

f10) valucs of G3teaux durivative of stotistical procedure or
logarithms of statistics” veriance.

Ad Q5) Robustness measures will be defined by wusing (f1)=
-(f10). There are, among others, the following options:

= 8 robustness measure is tho diameter of one of the funce
tions (f1)-(f10) ronging for the given variant of changes (chi)-
=(ch3) or their mixtures, .,

=~ a robustness mensure ie the rutio of the dismeter of one of
the renges of functions (f1)~(f10) and changes versions (chl)-
- (ch3) for a given set of stondard mode! neighbourhoods to the
diameter of the set of rangos of distances between noighbours
hoods of a standard model (or a robustnoss measure is the limit
of this rotio when the denominataor approaches to zero),

« a robustnase measure is the difference between the supre=-
aum of one of the ranges c! functions (71)=(f10) end the cor=
responding infimum defined on elements of particular neighbour=-
hood of standard mndel,

- a robustness measure 15 the distance between & value of
one of the functions (f1)-(710) calculated for the given stan=
dard model and the range of tie corresponding function calculat-
ed  for the elements of particular neighbourhood of the <ctun=
dard model, '

- a robustness measure is the distance between the set of
2ll ranges of functions (f1)-(f10) calculated for the given stan-
dard model and the set of all ranges of functions (f1)-(f10) cal=
ulated for the set of neighbourhoods of standard model (set of
supermodels),

Ad C6) Robust mathods are, in general, more numerically
complex than non-robust onss. It means that the numerical cost
of using then (as messured by e.g. computer time usage) is gree~
“er. Ve are not in a position ‘to give reasonable comparisons of
penefits and losses when using robust ‘methods, A '

Ad Q7) A degree of robustness should be fixed on the grounds

* dndications given by the mezsures proposed in Ad 05,
Ad 08) The concept of “stebility" was def ined pracisaly
ithin mechanice by Poincaré end next by Lapunoff. U 1 a m [19]
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discusses it in & more ganeral context of stability of mathemati-
cal theorems, He understands by it the property that while chang~
ing assumptions of a theorem "a little", the truth of the the~
orem i1s fully preserved or "approximotely” preserved.

Interesting propositions of defining stability wore given by
Zolotarev [22, 23] and extended by Bednoa r e ke
~Kozek, Kozek [2], and Bart o8 z yhoe ki,
Pleszozyneska [1].

Here we are trying to make the concept of etability more
concrete. Propositions of characterizations and robustness mea-
Sures presented in § 3 sand 4 were first formulated by Milo in
the work of M1 1 o, Waeeilewskd [15], A specified
kind of given method”s robustness sgainst eome changes of stan=
dard model would be defined by using the concept of etability of
measures belonging to the measures types (Mi)=(MS),

§: A Characterization

of Linear Stendard iModel’s Noighbourhoods

First we need to define neighbourhoods of Y. They can be de~-
fined in terms of Levy’s, Procherov’s, Meshalkin’s, Kolmogo-
fov’s or total variation metrics. 4

Due to the definition of random vector Y as

Y 1 (U, F,9) — (R, T 2y

We will use further the probebiltty 8pace (sp,}vn, QY). We will
Matrize the space R" : : ®

After metrizing the space ]" becomes the uotric apaco (r? ' @ n
(or shortly, if possible, writing R ,e) ;

Lot p;. P, be two non-negative finite sedsures defined on

(F is o-field of Borel subsets of (R", R ,Then we con

define tﬁp above mentioned metrics as folloae :

2) Meshalkin’s metrics [13]:

B (1‘1' Hgl = {“‘1(“ ' Pz(A”}
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where: A = an intersection of at most n holf-spaces, 8 half-egpa-
ce is an arbitrery set of points in R” determined by

n
{(Yl. see yn)' e R" H Z a,vy < b}; LI be Ri;
i=l

b) Levy‘s metrics

el. (pil pz) = max {e: (Pll Pz)o et'(!’zc !‘1)},
vhere: .

e: (4g0 ¥p) -'1nf{81p1 {(-oo, y]}<y2 {(-90. y]s} + §,Vye R"},
§>0 :

et’(pz, Pl) = 1nf{5:92 {(-m, y]} Sy {(—oo, Y]s}’ §, Vye r" }'
§>0

(=, Yf'{l « " : ER" (zy, (-~m, Y]).<5}
¢) Prochorov’s metrics
Ep (Bge pp) = max {9;(91' TPOP E:.(Pz' 91)}
Jhare | '

Bp (bys ) 7 inf {S tpg(A) € p(a®) o8, va e ’a"}'
‘ 5>0 & e s

é:' (ppe py) = tnf {8 tpy(A) € pz(As)té'. VA @ ‘FR"}'
5 nb ¥ g :
YA n {Y‘RV"ER" (y,. A)<.8}
d) Kolmogorov's metrics e ;

- (E'iri‘zv)’ ' I:P {lHI(A) - PZ‘A)l ; .A ,r('_@" y_).y .Vh.an }", j
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e) total varistion metrics

4 (Bge pp) = oup {IP;‘A) - pz(A)l}.
Ae¥
R

In formulating experiments schemes cne can replaca P 2
with the corresponding distribution functions F,, F, (or charag=
teristic functions ¢, (t), @,(t)). The enumerated metrice did
not exhaust the liet of all possible metrics of probability
space (R", ‘.FR". ®,). They enable us, however, to defineny,

i.e, the i-th neighbourhood of meosure Py " P, =Ny with re-
spect to the metrics 1 (where i =~ for & given metrics 1 de=
nNotes the index number attached to the given i~th value of '“.‘

0., fortai3m1,2 3 wehave n, =3 109, g, .
~3 « 107t qn-3'102)
Thus,

Qe P'iint eion- '3, By N1 = neighbourhood of mea<
sure P = u, = M, (XB, 6%1) we understand such set Uy, - of distrie
butions that the elements of U are distant from the moasures

Uz by the valus 7,,, i.e, B
u'zu . {4’2 'ey (?'1' pa) < '111}' ¥ N Nk By

Using Def. 1 we can define i - naidhbourhood of the stanw
dard model oM, as follown ' ‘ !

- Deafan 1 tion ~ neighbourhood of  model
‘Wl we understand such 8 set {d‘dﬁ.'} thut .mo}m {R""", S,Y=
Xg + 2 2. k =k, n 0™ M1 U

whtlo using the nams of {Jh&.o},. in dcﬂ.nlng the robustness me-
@sures 18 very fruitful 4n constructing schemes of experiments,
Lt turne out on the other hand, - that other nanes are also cone
venient (e.g. 'iil' set of suporuodels with respect to the stan-
derd model dPdL* or "oy - set of probabilistic extensions of
the standard modol ool "), ‘ ’

Note: 4f i = 1,10, then under Def, 1,2 ‘thers ars 10 x 5
" values of N4y therefore it is 50 sets of sup_ermo'dels for ths ol
" Denoting gy = Py = (XB,0) we can obtain
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nk -
{om.,},zn = (R™¥, 8,Y «xg+2, kymk, ngun, U ),

i1

that is M4 = neighbourhood of wudel oY’cM.'.

4. _Robustness lieasures of Estimotors Ageinst Chunges
of the Modal Neighbourhoods

Let bias (BJ) B E(BJ) - @ be the bias of the j=th kind of
estimator B for the parameter vector (3 from #dl,or 8 model be=
longing to the set {Jﬂu* .Thus a total bies 18 tobias (B)) =
= HE(BJ) - pl where |- denotes euclidean vector norm,

Lot sz’ii denote the range of tobias (B,) = tobias (B‘1 ()
calculated for the particular distributions belonging to the
- neighbourhood of JQ(Xp 35) and the corresponding models be=
longing to the set {JMLO}

In order to be more prociao we nead to introduce one more
index "d" connected with counting the consecutive numbor of "pu~
re” or “contaminated” distribution (belonging to the U, ) for
exasple: d = 1_,(1‘-v)xy(xp, 21)+vdt‘y(xﬁ +Z V.Jm, I'S where
y ‘ meN
v is an atypicslity quantity of the m=th component of vector Y,

m

Jn ~denotes the unit vector of the m-th coordinate axis, Ny 18
the set of atypical results of observations’ indices. Let the

range of d ba d =1, ..., d‘. Then

d(Ld)- {tobiae (Bd(J)(Qu))}! d =1, ..., d

'111 a

Under the sbove notations and definitions wa have
Definttion 3. The estimstor 8%J) of B from Jdl,
vwiill be callad bias-robust in the {df’u }'lu -neighbourhood of the
standard model ok, 1f the following implication
VE>O B'zil> 0 VPZVd : (pz & U;il) — P (0‘5{;:?0'(5))< £,
o) 20 B(y ;= 0)).
haldz, &
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Note: the above implication con bo replaced, e.g. by
a9

(@), _ j
VESO 3‘2 >°VP2V"‘(&'2€U ) +(dnom(0,zﬂ)<£),

il Qh
for diam A = sup p (Bl' “2)’ R
al, a? € A
As bias-robustness measures for the estimator “3 ong can
proposa G,d)
2) BROMB 1 = dicm Oy s
dian O'(j’d)
b) BROM B,2 & —— Uil |
3 diam U
diam O, "
¢) BROM B,3 = lim e idie
3 J diam U, -—0 dian u'lu
41
d) BROM B4 = oup {Tobus (B(;i.l ))}_ Th {Tobias (B(J.d))}'
] 4 p ’

®) BROM B5 = infp (o("d) (”) ,

J
jyd i
sup {0“ )} - in f{ (,d)}
f) BROM 8,6 d i d '111
.3 _ gup{ ().d)}
¢ L n

We say that the estimator 81 i¢ more bias-robust than the cs-
timator B, if ;

BROI B,r < BROM B,yr, r=31,6.
1f someone is interested in the procision of estimators he should
study the performance of B with respect to the m ean-equare-or-
ror MSE(B,), that is the characterization of Mse(e,) =ElB -pll

We would be interested in tho behaviour of MSE( J) within the

probabilistic neighbourhood of Nk, , 1.0, {J‘ou.o’}.,ln x

Let %)) denote the range of M‘SE(B,l ) calculated for the
dietributiog‘a of Y belonging to the neighbourhiood Un of the
distribution J(’Y(er, 321). % s 4

For the given distribution measure p.‘,eU.,z - PR da
from this neighbourh?og)the estimator B, corresponding to  p,
will be denoted by Bnn . Then
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——— s — e . it 4

(j) { (j,d)
x MSE d - 1. ceewy d .
T ( xlb' °}

Thus .
Dafindition 4. The estimator B, of vector 3 from
d, will be called MSE-robust in the neighbourhood {am },‘ if  the
fallowing teplication
(;.d) ()
VE>0 agg>ovp,ve i (p, @ uq )-..e( x)<e,

holde., @
Note: another option is

YE>O 3 >0V32de (f‘z € U;::) - (dmm(‘x“j:)) <6}y

4

_On the ground of Dof. 4 we can define MSE~robustness uuurn, 0.
g, as followg

' ()
21) MSERH 831 du- ')c,zi
diam ‘J(.‘,':
b1) MSERM 912 - T uutl ] 5
' : o diam %, :
c1) MSERM B.3'w lim HTFFU',"?L i
: dienm u—*

| 41) MSERM B4 ~wp {x" d)}- inf { old ")} 4= 3 ....'d..

el) MSERM BJS - 13} e 'x(g;.:)’ '.K‘J)}.
f1) MSERM B.6 . MSERM B4 ; : A |
.

A relatively synthetic robustness measure 18 ‘a robustness
moasure of B, ageinst the changds of distance between the distri—
bution  pg = PY and other distributions of Y with reapoct to
tiie changes of distances between corresponding distributions  of
€,. Y8 nsed (Bj)

Definttion 5 By the netghbourhood fo of pg =
= P we understand such a set of probability’ dietributions of

o
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4
B S

a

|

B which are not more distant from 903 thon by 2 quantity
Il, i.e.

(B )

e I R ) < @
N “4 eils Pa }

Hence

Definition 6. The estimator B, will be called di-
stributionally~robust against changes of distributions of ¥ with-
in the neighbourhood qul if the implication

) ()
Vfl>0 3711'['1. vd :(yze Unu)-—b(P‘ € l.i-c-l )o
holde, @
Under the Def, 6 we can formulate, among others, the follow-

ing distribution robustness t)nooourea:
(8
1 = diem ”tij :

dian uéBJ)

a2) DIRM By

b2) DIRM B,2 =

37 7 daom Uy
o Teg

c2) DIRM B3 = lim DIRM ajz,
diom U2 0
i ; .

d2) QIRM DJA ™ s:p {9‘93' y4)} - 13f'{d (93'“4,d)}'

' _ (8,)

b3 * "y’ bog? V3 4‘4.6 b Uil. %
ez) DIRM 8,5 = inf (o )

J d
DIRM B 4

f2) DIRM 8,6 = sl

ew&w&,“ﬁ}f

In the above definiticna the aampxg cizo n waa fixad. Ha m=
pel [6] proposes to vary n énd conoidar the robuatnoso of
sequance of sanmple estimators with the varytng sample size. Be-l
“fore prosenttng hia idea let us introduce the followihg notationz

Y . {F B Y Q} ~ the set of 311 dutributiono mea-
sures defined on (U,F); '
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WQ? = {*n. G v seey Pn' Qn' n>1 } - the set of woll distrie-

butions neasures dafined on (R", & n):
14

).

{B(n), n > 1} ~ tha saquence of B(n) s (u.?)»(a". '.FRn

For oach sequence of n-element asmple generated from F e v
it correcponds to the empirical distribution from 'Yn.

The mapping B, induces the conditional distribution ag(a(ng.
that 18, the distribution of estimator B(n) under the condition
that the sample was generated from the distribution F,

De,finition 7, The sequence {B(n)‘ q‘> 1.} viill
be called robust with respect to changes in empirical distribu-

tions if the following implication

V€, >03n,vovn + (p(F, 6) < q,) —(p (X (By), £ (8 I) <€)

holde, @
Definitions 6 and 7 determine the robuetness with respect to
tho estimotor’s distribution as such a property which couses

that the conditional distribution of this estimator is changing
"s little" 47 we change the distribution generating the sanple
undarlying it, These facts also determine postulates that should
be sddressed to robust estimation methods. Oue to space limita-
tion and 2 homogeneity requirement we will not cover this topic,

5, Final Remarks

The paper contains some ordering of the known statistical
concepts connected with the propositions of definitions of ro=
Luoiness measures for the estimators. We have not presented re=~
sults of experiments carried out by 2, Wasilewski connected with
‘he performance of chosen estimation methods that would be pre=~
sented in the next paper, \le have not described, among others,
eosures of s

- afficiency~robustness of estimators, _

- forecasting power-robustness of estimators,

~ numericel bad conditioning~robustness of estimation,
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. WYBRANE PROBLEIY ODPORNYCH METOD ESTYMACII
PARAMETROW MODELI LINIOWYCH.
¢z, Iy c,mmenvsrm ODPORNOSCT

Prace zawiaras

1) opis intuicyjnego i heuryetycznogo znaczonia odporno‘ci.

2) opis jakodciowy misr odpdrnodci,

3) formalng churnhtoryotykq otoczontn atandardowogo modelu
liniowego,

4) definicje miar odpornoéci oatyuotoréw na zmiany oto-
czenia danego modelu standardowego (tj. miar odpornos$ci obcig~
zenia i miar odpornoéci bledu $redniego), .

5) definicje odpornoéct w odniesieniu do cmpirycznogo rozkia-
du estynatora. : '



