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MULTIVARIATE MULTIVALUED RANDOM VARIABLE

ABSTRACT. Given a probability measure space (£2, A, P), random variable in clas-
sical definition is a mapping from £ to R. Multivalued random variable is a mapping

from £2 to all subset of X. For a real separable Banach space X with dual space X", let

LP (82, A), for 1 £ p < e, denote the X — valued L” - space. In this paper we present the
integral for multifunction and some property of multivalued random variables in multi-
variate case. The theory of multivalued random variables has been established for
Banach space-valued and for Bochner-integrable function. The main purpose of this
paper is to present a theory of multivalued random variables as a generalisation of point-
valued cases.
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I. INTRODUCTION

We shall give some properties of the integration of multivalued function,
introduced by Aumann (1965). In this paper we present the integral for multi-
function and some property of multivalued random variables in multivariate
case. We shall establish the existence of the multivalued conditional expectation
of multivalued random variables, and present a number of properties analogous
to those of the usual conditional expectation. The theory of conditional expecta-
tion has been established for Banach space-valued and for Bochner-integrable
function.

"Dr hab., Department of Statistics, The Karol Adamiecki University of Economics in Ka-
towice.
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II. MULTIVALUED RANDOM VARIABLE

Given a probability measure space (£2, A, p) random variable in classical
definition is a mapping from £ to R. Multivalued random variable is a mapping
from &2 to all closed subset of X.

We have a real Banach space X with metric d. For any nonempty and closed
sets A, B © X we define the Hausdorff distance h(A, B) of A and B.

Definition 1. The excess for two nonempty and closed sets be defined by

e(A, B) = sup d(x, B), where d(x, B) = inf | x~-y |

xeA yeB
the Hausdorff distance of A and B is given by
h(A, B) = max {(eA, B), e(B,A)},
the norm || A || of set A we get as

Il All = h(A, {0}) = sup || x|
xeA

The set of all nonempty and closed subsets of X is a metric space with the
Hausdorff distance. The set of all nonempty and compact subsets of X is a com-
plete, separable metric space with the metric h.

Definition 2. A multivalued function ¢: £ — 2% with nonempty and closed
values, is said to be (weakly) measurable if ¢ satisfies the following equivalent
conditions:

a) ' (C)={we Q: ¢ C#D) e A forevery C open subset of X,

b) d(x, @ (w)) is measurable in w for every x € X,

c) there exists a sequence {f,,} of measurable functions f,;: £ — X such that

¢ () = cl{fy, (w)) forall w e L.

Definition 3. A measurable multivalued function ¢@: £ — 2% with non-
empty and closed values is called a multivalued random variable.
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A multivalued function ¢ is called strongly measurable, if there exists a se-
quence {¢,} of simple functions (measurable functions having a finite number
of values in 2% ), such that h(ey (), ¢ (w)) = 0 as.

Since set of all nonempty and compact (or convex and compact) subsets of X is

a complete separable metric space with the metric A, so multifunction ¢ : £ — 2% is
measurable if and only if is strongly measurable. This is equivalent to the Borel
measurability of ¢.

Let K(X) denote all nonempty and closed subsets of X. As the o- field on

K(X), we get the o- field generated by @' (C) = {w e & ¢ (w) N C # @), for
every open subset C of X, The smallest o-algebra containing these ¢~ (C) were
denoted by A@. Two multifunctions ¢ and y are independent if A and AlI/ are
independent. Two multifunctions ¢ and ¢ are identically distributed if
u(o™ (€)= u(y™ (C) for all closed C c X.

Definition 4. We say that a sequence of multivalued random variables
On: S — 2%) is independent if so is {¢,} considered as measurable functions
from (£2, A, p) to (K(X), G).

Definition 5. Two multivalued random variables ¢, y: Q — 25

identically distributed if ¢p(w) = y(w) a.s.

are

Particularly for ¢, with compact values independence (identical distributed-
ness) of {¢,} coincides with that considered as Borel measurable functions to all
nonempty, compact subsets of X.

Definition 6. A selection of the measurable multifunction ¢ : Q — 2% is
a measurable function f: £ — X, such that lw) € @(w) for all w € .

Let ¢, v : Q — 2% be two multivalued random variables, we define the
following operation (Castaing, Valadier 1977):

1) (¢ L y)(w) = cl(@p(w) + (@), w € L.
2) for a measurable real-valued function g

(gp)(w) = g(w)p(w), we Q.
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3) (co ¢)(@) = co P(w), we

(c_o -denote the closed convex hull).

III. MEAN OF MULTIVALUED RANDOM VARIABLE

Let L7 (L2, A), for 1 £ p < oo, denote the X — valued L” — space. We intro-
duce the multivalued L” space.

Definition 7. The multivalued space L’ [£2, K(X)], for 1 £ p < o denote the
space of all measurable multivalued functions ¢ : Q— 25%)  such that

l@ll=l¢C)|lisin L”.

Then L”[£2, K(X)] becomes a complete metric space with the metric H “

given by
H, (9. v) = { |gh(@@).y @)’ du ) VP, for 1 <p<eo

Heo (¢, W) = ess sup h(p(w), w(w),

WeQ
where ¢ and y are considered to be identical if p(w) = y(w) a.s.

We can define similarly other L” space for set of different subsets of X
(convex and closed, weakly compact or compact). We denote by L’ [, K(X)]
the space of all strongly measurable functions in L” [£2, K(X)]. Then this space
is complete metric space with the metric /.

Definition 8. The mean E(¢), for a multivalued random variables
@: 2 — 28X ig given as the integral I9¢du of ¢ defined by

E(@) =[,0du = ( [, fdu:fe So)),
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where

S(p) = {fe L' [Q X]: flw) e p(w)as.)

The mean E(¢) exists if S(¢) is nonempty. Multifunction ¢ is an integrable,
if ||@(w)|| is an integrable. If ¢ have an integral, then E(¢) is compact. If u is
atomless, then E(¢) is convex. If ¢ have an integral and E(¢) is nonempty, then
co E(¢) = E(co¢), (co-denote convex hull of the set).

This multivalued integral was introduced by Aumann (1965). For de-
tailed arguments concerning the measurability and integration of multifunction
we refer to Berge (1966); Castaing, Valadier (1977); Debreu
(1967). Now we present some properties of mean of multivalued random vari-
ables.

Let ¢, y: Q — 25 be two multivalued random variables with nonempty
S(¢) and S(y) then:

1) cl E(g L ) = cl (E(¢) + E(y)), where (¢ L y)(@) = cl (p(@) + y(@)).

2) cl E(co @) = co E(p), where (co P)(w) = co p(w), the closed convex hull.

3) h(cl E(@), cl E(y)) = H1(¢, ).

Lemmal. (Berge 1966) Let ¢: 2 — 25 and 1S p <.
If S”(p)={fe L[, X]: lw) € ¢p(w) a.s.} then exists a sequence {f,} con-
tained in S’ (¢) such that (@) = cl {f,(w)} forall w € L.

Lemma 2. (Berge 1966) Let ¢, y: 2 — 25 and 1< p < e,
1f S"(p) = § () # @ then P(w) = W) a.s.

These properties of mean of multivalued random variables are in fact the
properties of the multivalued Aumann’s integral.

IV. CONDITIONAL EXPECTATION OF MULTIVALUED RANDOM
VARIABLES

Given a probability measure space (£2, A, 4) we assume that it is a finite
measure and we get B as a sub- o- field of A. For g € L' [, B, 4, X ] we define:

Sp(@) = {fe L' (2, B, u X): flw) € p(w)as.)
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The integral of @ on (£2, B, u) is defined as

[oodu = ([ fdu: e Sy(9)

Definition 9. For f& L' [, X] the conditional expectation E(f/B) of f rela-
tive to B is defined as a function E(fIB) € L' [, B, i, X] such that

[E(f/Bydu = [ fdu, Ae B
A A

When X is a Banach space, it is known that conditional expectation E(f/B)

exists uniquely for any L' [, X]. We have some well-known properties of con-
ditional expectation. Now we define the multivalued conditional expectation and
next we present properties of our new multivalued random variable.

Definition 10. Let € L' [£2, X], the multivalued function ¢ € L' [, B, u, X]
which satisfying

Sz (@) = cl{E(fIB): f€ S(¢)},the closure is taken with respect to L' [, X] we
call multivalued conditional expectation of ¢ relative to B, we notice ¢ = E(¢ /B).

Theorem 1. Let g € L' [£, X], then there exists a unique E(¢/B) € L' [, B,
M, X]

There exists a unique ¢ which is equal to the closure of the set of the condi-
tional expectation for all integrable selections of ¢. If B is trivial B = { &, 2} then

E(@/B) = [u(£)]" J'Q(pd/.t . We recall some basic properties of multivalued condi-

tional expectation, analogous to those of the usual conditional expectation
(Trzpiot 1996, 1999).

Theorem 2. Let ¢, y: 2 — 2% be two multivalued random variables
with nonempty S(¢) and S(y), then the conditional expectation E(¢ /B) of ¢
relative to B have the following properties:

1) cl E(p © WIB) = cl (E(¢/B) v E(y/B)),

2) E(g@/B) = gE(@IB), where g is measurable real-valued function,

3) E(co ¢/B) = co E(@/B).
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Theorem 3.

DIfge L'[£ B, 1 X], p(w) is convex and g is nonnegative real L™ func-
tion, then conditional expectation E(gq/B) = E(g/B)¢, in particular E(¢ /B) = @.

2)IfBjcBcAand g€ L' [, B, u, X], ¢(w) is convex then E(¢/B,) taken
on the base space (£, A, 1) is equal to the conditional expectation of ¢ relative
to B, taken on the base space (£, B, l).

3) E(E(¢ /B)/B,) = E(¢/B,) for B C BCA.

We can add that both theorems were proved directly from properties of inte-
grals of set-valued functions.

V. CONVERGENCE OF MULTIVALUED CONDITIONAL EXPECTATION

We establish convergence theorem for multivalued conditional expectation
(particularly for multivalued integrals). Let B be a fixed sub-o-filed on A and
{¢,) a sequence of multivalued random variables with nonempty and closed

value. We have the monotone convergence theorem.
Theorem 4. Suppose that @, () C @, (@) C..... a.s. with S(¢, ) # @ and let

() =cl{ U(p,l (w) } we L. Then @ has nonempty and closed value and

n=1

E(@IB)Y(@) = cl{ | JE (¢, BY@)) as.

n=|

Proof. Let w=cl{|JE (¢,/B)®) }, w€ €. Then ¢ and y have nonempty and

n=1
closed value and y is B — measurable. Obviously
S(g,) € S8(@,) C.... € S(9),
S(¢,/B)  S(¢,/B) C.... © S(¢/B).

For any f € S(¢), we have
inf |f =8| = Edfe), () =0

g€S(9,)

since d(f(), ¢(-)) € L' and d(fw), p(w)) — 0 a.s.



16 Grazyna Trzpiot

Hence S(¢) = cl ( OS ((¢,)) and similarly S(y/B) = cl( DS (9,/B)).

n=| n=l

Thus S(¢/B) = cl( O{E(f/B): fe S(@,)}= S(yIB), which implies E(¢/B)(®) =

n=l

= y(w) a.s.
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WIELOWYMIAROWA WIELOWARTOSCIOWA ZMIENNA LOSOWA

Majac przestrzen probabilistyczng (£2, A, P), zmienna losowa jest odwzorowaniem z £2 w R.
Wielowymiarowa zmienna losowa jest odwzorowaniem z £ w zbi6r wszystkich podzbioréw X.

Dla rzeczywistej separowalnej przestrzeni Banacha X z dualng przestrzenia X*, niech LP (£, A),

dla 1 < p < oo, oznacza X — warto§ciowsq przestrzeni L”. Artykut zawiera wlasnosci catki wielo-
wartosciowych odwzorowan w ujgciu wielowymiarowym. Definiujemy warunkowe $rednie wraz z
wlasnodciami o zbieznoci. Podstawowym celem jest ujecie teorii wielowartociowych zmiennych
losowych jako uogélnienia klasycznej teorii.



