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Abstract. New construction methods of the regular D-optimal spring balance
weighing designs under assumption of nonhomogeneity of variances of errors are
presented. The constructions are based on the incidence matrices of the balanced
bipartite weighing designs.

Key words: balanced bipartite weighing design, D-optimal design, spring balance
weighing design.

I. INTRODUCTION

Assume that using » measurement operation we determine unknown
measurements of given number p of objects according to the standard Gauss-

Markoff model
y = Xw +e,

where y is an nx1 random vector of the recorded results of observations
(measurements), X = (x,j) is an nx p matrix with x; =1, 0 according to if in the
i-th  measurement operation the j-th object is included or not,
i=12,...n, j=12,..,p, w is a pxl vector representing unknown
measurements of objects and e is an 7 x1 random vector of errors. We assume
E(e)=0, and Var(e)=0’G, where G is the positive definite nxn known
matrix. The squares estimator of the vector representing unknown measurements
of objects w is equal to W= (X'G’IX)_IX'G’Iy assuming that X is of full

column rank. The variance matrix of W is given by Var(W) = GZ(X'G’1X)_1.
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D-optimal designs there are designs for which the determinant of
(XVG_IX)f1 is minimal. Particularly, the conditions determining the existence of

the D-optimal weighing designs for G=1I,, where I, is an nxn identity

matrix, were studied in Gail, Kiefer (1980), Neubauer et al. (1998). The
initiation of the study of the existence and construction of D-optimal spring
balance weighing design for a special form of G is presented in Katulska,
Przybyt (2007).

In the present paper the construction method of a D-optimal spring balance
weighing designs for a special form of the variance matrix of errors given in
Katulska, Przybyt (2007) is considered.

II. REGULAR D - OPTIMAL DESIGN

For a given n and p, let X be an nx p design matrix of rank p of
a spring balance weighing design in the form

X=|, (1)
X

where x is pxI1 vector of elements 1 or 0, X, is (n - l)x p design matrix
which satisfied the conditions given in Neubauer et al. (1998)

(p+1)n-1) if pisodd

' _ l _ 4p
X, X —77(Ip +1p1p), where 77 = (p+2)(n-1) . . , )
~—————— if piseven
4(p+1)
1 ,» denotes the px1 column vector of ones.
Let the variance matrix of errors be of the form
o’G = O'Zdiag(l, L..1, g_l), g>0. 3)

The definition of the regular D-optimal spring balance weighing design for
the matrix X in the particularly form and the following Theorem are given in
Katulska, Przybyt (2007).
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Definition 1. Any nonsingular spring balance weighing design X in the
form (1) with the variance matrix of errors in (3) is is called the regular D-
optimal if

(p+1)(1+ gplj((p“)(”‘l)y if pis odd

det(XG'X) ' = " e .
(p + 1{1 + ngf)lj( (p:(;)inlg 1)j if piseven

Theorem 1. Any nonsingular spring balance weighing design X in the form
(1) for which (2) holds and with the variance matrix of errors in (3) is a regular
D-optimal if

(i) y;'ll,:f”T+1 for odd p,

(i1) lep =§ or xvlp =pT+2 for even p.

Although the construction of a regular D-optimal spring balance weighing
design is possible by applying the incidence matrices of the balanced incomplete
block designs (See Neubauer et al. (1998)) in the present paper we show the
construction for certain incidence matrices of the balanced bipartite weighing
designs.

IT1I. BALANCED BIPARTITE WEIGHING DESIGNS

Now, we shall give a brief description and elementary properties of the
balanced bipartite weighing designs. In the papers Huang(1976) and Swamy
(1982) the balanced bipartite weighing design with the parameters v, &, k,, 4,
are considered. There is design which describe how to replace v treatments in b
blocks such that each block containing & distinct treatments is divided into 2
subblocks containing k; and k, treatments, respectively, where k =k +k,.
Each treatment appears in 7 blocks. Every pair of treatments from different
subblocks appears together in A, blocks and every pair of treatments from the
same subblock appears together in A, blocks. The integers v, b, r, k, k,, A, 4,

are all parameters of the balanced bipartite weighing design. The parameters are
not independent and they are related by the following identities
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vr = bk, b:AqV(V—l)’ r:A’lk(v_l), %:ﬂﬂ(kl(kl_l)_FkZ(kZ_l))‘ (4)
2kk, 2kk, 2kk,

Let N be the incidence matrix of such a design with the elements equal to
0 or 1, then

NN =(r=4 =L, + (4 + L)L, (5)

In order to exclude trivial balanced bipartite weighing designs, k =k, + k, is

always assumed to be greater than two and without loss of generality we assume
that k <k, and k,=k +c, where c¢=0,1,.... It is justified because the
existence of the balanced bipartite weighing design with the parameters
v,b,r, k, ky, 4,4, implies the existence of the balanced bipartite weighing
design with the parameters v, b, r, k,, =k,,, k,, =k;,, 4, 4, . In the other words,

if we change the sizes of subblocks then the other parameters of the design do
not change.
A balanced bipartite weighing design for which k =k, +c is called also a

tournament design, see Bose, Cameron (1967). A resolvable balanced bipartite
weighing design with k, =k, =2 and A, =1 is also called a whist-tournament,

see Baker, Wilson (1974).

IV. CONSTRUCTION OF REGULAR D-OPTIMAL DESIGNS

Let N be the vxb incidence matrix of the balanced bipartite weighing
design with the parameters v, b, r, k;, k,, 4, A, . Then

X:m (6)
X

is the matrix of a spring balanced weighing design. In this design we have p =v
and n=b+1.

Theorem 2. Let v be odd. If there exists any balanced bipartite weighing
design for which v=2k—1 and r = 2(ﬂ1 + AQ) then a spring balance weighing
design X in (6) with the variance matrix of errors in (3) is regular D-optimal.
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Proof. From the condition (i) of Theorem 1 and from the conditions (4) it
follows that a spring balance weighing design is regular D-optimal if
r= 2(/11 + /lz) and. Thus we obtain the Theorem.

Theorem 3. Let v be odd. If N is the incidence matrix of the balanced
bipartite weighing design with the parameters

v=4k +2c-1, b=ﬂ1(4k1+2c_1)(2k1+c_1)

k,(k, +¢) ’
A2k + )2k, +c-1)
- ke, (k, +¢) ’

ki ky=k +c, 4, A4 = /11(2](12 +§](€C(;{1?flc;_ C(C—l))

then X in (6) is a regular D-optimal spring balance weighing design with the
variance matrix of errors given in (3).

Proof. Applying v and r of the form given in Theorem 2 and k =2k, +c we

get v=4k +2c—1 and r=2(4 +4,). Since the parameters v, b, 7, k;, k,, A, 1,

of the balanced bipartite weighing design satisfy relations (4) it can be easy
verified that

bzﬂq(4k1+20—1)(2kl+c—1)

k](k1+c) ’
y—dk +20-1 b= 2,4k, +2¢—1)2k, +c—1), . 2,2k, +c)2k, +c—1)
k,(k, +c) ke, (k, +¢)
and 4, - A +2(c =1k + el -1))
2k, (k, +c)

Theorem 4. Any regular D-optimal spring balance weighing design X

given by (6) for even v and with the variance matrix of errors in the form (3)
does not exist.
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Proof. The conditions (2) and (5) imply that a spring balance weighing
design is regular D-optimal if » = 2(2q + /12) and b(v+1)= 2vr. Now, using the
last relation we obtain square equation v —2(k—1)v—2k =0, which has not
solution in natural numbers. Hence we obtain the Theorem.

V. THE PARAMETERS OF THE BALANCED BIPARTITE WEIGHING
DESIGNS

With the results obtained until now we shall give the parameters of the
balanced bipartite weighing design based on which we construct the incidence
matrix N and the regular D-optimal spring balance weighing design X in the
form (6).

Theorem 5. If the conditions
(i) 4 =0mod(k, +c),
(ii) Aclc—1)=0mod(2k (k, +c)),
(iii) 2,(2¢ —1)c —1)= 0 mod(k, (k, +¢))
are simultaneously satisfied then any balanced bipartite weighing design exists.

Proof. The theorem is the consequence of the equalities
b=21(4k1+2c—1)(2k1+c—1) 64, +21(2c—1)(c—1)

ky(ky +¢) :821_k1+c k,(k, +¢)
b= 4+ 201, b = 2 (4k, +2¢—1)2k, -I—c—l), . 2,2k, + )2k, +c—1)
k(K +c) e, (k, +c)
_ay %A Aele-1) _A(2k12+2(c—1)k1+c(c—1))
_411 k1+c+k1(k1+c) and 4 = 2k, (k, +c)
= - A " ﬂ,lc(c—l)

ko+c 2k(k+c¢)

From Theorems 2 and 3 the following Corollary can be establish.
Corollary 1. If ¢=0 and 4, =0 mod(kl2 ) then the balanced bipartite
weighing design with parameters
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o dk 1 b= 2, (4k, —12)(2k1 —1)’ L 24,2k, _1),k1,k2 kA
ki ky

The condition A4, =0 mod(kl2 ) is equivalent A, =uk}, u=12,.. If
A = ukl2 then the necessary conditions for the existence of the balanced
bipartite weighing designs are v =4k, —1, b = u(4k, —1)2k, —1), r = 2uk,(2k, —1),
kyy ky =k, Ay = uk?, A, = uk,(k, —1).

Let us consider the special cases.

If u=1 and k, =k, =2 then v=7,b=21,r=12,1 =4, 1, =2 (the design

N°20 of Huang (1976)).
Ifu=1and k, =k, =3 then v=11,6=55,r=30, 4 =9, 4, =6 (the design

N°94 of Huang (1976)).
Corollary 2. If ¢=1 and 4 =0mod(k +1) then the balanced bipartite

24, (4k, +1) L2 (2k, +1)
k+1 7k +1

weighing design with parameters v=4k +1,b=

b

ko .
ki, k,=k +1, 4, =hex1sts.
b=kt 4,4 b+

The condition 4 =0mod(k, +1) is equivalent A =u(k, +1),u=1,2,.... If
A =u(k, +1) then the necessary conditions for the existence of the balanced
bipartite weighing designs are v =4k, +1,b=2u(4k, +1),r = 2u(2k +1),
ki, ky =k +1, 4 =u(k, +1), 1, =uk, .

Also, note the following remark.

If u=1 and k; =1 then v=5,b=10,r=6,k =1k, =2,4 =2,4, =1 (the

design N° 5 from Lemma 3.8 given in Huang (1976)).
If u=1 and k, =2 then v=9,b=18,r=10,k =2,k, =3, 4, =3, 4, =2 (the

design N° 48 from Section 4 in Huang (1976)).
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If u=1 and k =3 then v=13,b=26,r=14,k =3,k, =4, 4, =4, 1, =3
(the design N° 161 from Theorem 3.4 in Huang (1976)).

Corollary 3. If ¢=2 and 4, =0 mod(k, (k, +2)) then the balanced bipartite
weighing design with the parameters

A4k, +3)2k +1) 242k + 1)k, +1)
k2 0 kk+2)

2
kZ:k1+2,21,/12=ﬂ‘ kit +1) exists.

ke, (k, +2)

The condition 4 =0mod(k,(k +2)) is equivalent A =uk, (k, +2),
u=1,2,.... If 4 =uk(k +2) then the necessary conditions for the existence of
the balanced bipartite weighing designs are v=4k +3,b= u(4k1 + 3)(2k1 + 1),
r=2u(2k, +1)k +1). ko Ay =uky(ky +2), A =ulk? + 1) ky =k, +2.

Suppose that # =1. One obtains the following results.

W) v="7,b=2Lr=12,k =Lk,=3,4=3,4,=3,

(if) v=11,b=55r=30,k =2,k, =4, 4, =8, 1, =17,

(iii) v=15,b=105,r =56,k =3,k, =5, 4, =15,1, =13

(Theorem 3.3 of Huang (1976)).

v=4k +3,b=

s Vs

Now, if £, =0,5- c(c - 1) then from Theorem 3 the following Corollary can
be expressed.

Corollary 4. If N is the incidence matrix of the balanced bipartite
2
weighing design with the parameters v=2cz—1,b=M1 2C2 ! r=44,

)
C

ky = c(cz_ 1), ky = c(c2+1), Ay Ay =4, c=2,3,.., then X in (6) is the regular

D-optimal spring balance weighing design with the variance matrix of errors
given by (3).

Then, from Corollary 4 and Theorem 2 given in Ceranka, Graczyk (2005) is
also obtained directly the following Corollary.
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Corollary 5. If the condition
42, =0 mod(c?) (7)
is satisfied, then any balanced bipartite weighing design exists.

The condition (7) is equivalent 44, =uc®, wu=1,2,.... Hence u =0 mod(4)
or ¢ iseven. If c=2d, d=1,2,... then the necessary conditions for the existence
of the balanced bipartite weighing designs are v=8d°-1,b= u(8d 2 1),
r=4dud®, k =d(2d 1), k, =d(2d +1), 4, =ud®, 2, =ud” .

Some special cases can be described as follows.
If u=1 and d=1 then v=7,b=7,r=4,k, =Lk, =3, 4 =14, =1 (the

design N° 19 given by Huang (1976)).
If u=4¢1t=1,2,..., then the necessary conditions for the existence of the

balanced bipartite weighing designs are v=2¢ b= 4t(2c2 - 1), r=4tc?,

g=ceml) et e g e
2 2
If c=2 and 7=1 then design N° 19 is repeated 4 times.

VI. EXAMPLE
Let us consider the balanced bipartite weighing design with the parameters

v=5,b=10,r=6,k =1,k,=2,4,=2,4,=1 (the design from Corollary 2)
given by the incidence matrix

1, 1, , 1, 0 0 0 O 1, 1]
L 0 1, 1, I, , I, 0 0 O
N=1, I, 0 0 1, O 1, 1, 1, 0|,
01, 1, 0 I, 1, 0 1, 0 1,
0o 0 0 1, 0 1, 1, I, 1, L]

where 1, denotes the object belonging to the A-th subblock, ~=1,2,

respectively. Hence we form regular D-optimal spring balance weighing design
in (6) as
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1110 0
10110
11010
1100 1
01 1 10

X=[0 1 0 1 1
01 1 0 1
00 1 11
10101
100 11
1110 0
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Maltgorzata Graczyk

DWUDZIELNE UKLADY BLO!((')W PROWADZACE DO REGULARNYCH
D-OPTYMALNYCH SPREZYNOWYCH UKLADOW WAGOWYCH

W pracy przedstawiono nowa metode¢ konstrukeji regularnego D-optymalnego sprezynowego
uktadu z tarowaniem przy zatozeniu, ze wariancje btedéw pomiardw nie sa jednorodne. Do
konstrukcji macierzy uktadu wykorzystano macierze incydencji dwudzielnych uktadéw blokdw.



