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Abstract. In real research problems we usually deal with relevant variables and 

irrelevant (noisy) variables. Relevant variables sometimes can not be identified, by for 

example HINoV method or m odified HINoV method. This paper compares effectiveness 

detection o f  known class structure with application o f  symbolic decision trees and 

symbolic kernel discrim inant analysis in situation where we deal with noisy variables. 

This research was conducted on artificial symbolic data from a variety o f  models. The 

models contained known structure o f  clusters. In addition, the models contained different 

num ber o f  noisy variables added to obscure the underlying structure.
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I. INTRODUCTION

Symbolic Data Analysis is an extension o f multivariate analysis dealing with 

data represented in an extended form. Each cell in symbolic data table (symbolic 

variable) can contain data in form o f and single quantitative value, categorical 

value, interval, multivalued variable, multivalued variable with weights. Due to 

extended data representation Symbolic Data Analysis introduces new methods 

and implements traditional methods that symbolic data can be treated as an 

input. In case of discriminant analysis two known methods can be adapted for 

symbolic data: Kernel Discriminant Analysis and classification tress. Article 

describes both methods and compares the quality of prediction in various 

scenarios with growing number of noisy variables in learning and test sets.

First part is an introduction to symbolic data analysis, symbolic objects, 

symbolic variables are described and dissimilarity measures for symbolic objects 

are presented. Second part shows how methods of discriminant analysis, and of 

kernel discriminant analysis in particular, may be adapted for symbolic objects.

Third part describes algorithm of creation symbolic classification trees. The 

forth part presents computational simulation comparing results of discriminant.
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process with use of both methods in various scenarios with growing number of 

noisy variables in learning and test sets.

Finally some conclusions and remarks are given.

II. SYMBOLIC VARIABLES AND SYMBOLIC OBJECTS

Symbolic data, unlike classical data, are more complex than tables of 

numeric values. While Table 1 presents usual data representation with objects in 

rows and variables (attributes) in columns with a number in each cell, table 2 

presents symbolic objects with intervals, set and text data.

Table 1. Classical data situation

X Variable 1 Variable 2 Variable3

1 1 108 11.98

2 1.3 123 -23.37

3 0.9 99 14.35

Source: own research.

Table 2: Symbolic data table

X Variable 1 Variable 2 Variable 3 Variable 4

1 (0.9; 0.9) {106; 108; 110} 11; 98 {Blue;green}

2 (1:2) {123; 124;125} —23;37 {light-grey}

3 (0.9; 1.3) {100; 102; 99; 97} 14;35 {pale}

Source: own research.

Bock and Diday (2000) define five types of symbolic variables:

• single quantitative value,

• categorical value,

• interval,

• multivalued variable,

• multivalued variable with weights.

Variables in a symbolic object can also be, regardless o f its type (Diday 

2002):

•  taxonomic -  representing hierarchical structure,



• hierarchically dependent,

• logically dependent.

There are four main types of dissimilarity measures for symbolic objects 

(Malerba et al. (2000), Ichino and Yaguchi (1994)):

•  Gowda, Krishna and Diday -  mutual neighbourhood value, with no 

taxonomic variables implemented;

• Ichino and Yaguchi -  dissimilarity measure based on operators of 

Cartesian join and Cartesian meet, which extend operators и  (sum of sets) and n  

(product of sets) onto all data types represented in symbolic object,

• De Carvalho measures -  extension o f Ichino and Yaguchi measure based 

on a comparison function (CF), aggregation function (AF) and description 

potential of an object.

• Hausdorff distance (for symbolic objects containing intervals).

III. KERNEL DISCRIMINANT ANALYSIS OF SYMBOLIC OBJECTS

Most o f modern discriminant methods are based on the maximum likelihood 

rule, which says that an object from test set should be assigned to the class of 

training set for which the value o f distribution density function achieves 

maximum. In earlier discriminant methods (Altman equation, Fisher analysis) 

there was an assumption that objects in classes of training sets had normal 

distribution but in real discrimination problems we cannot make such 

assumption. Therefore one of main problems o f modern discriminant analysis is 

to estimate distribution density function for each class of the training set.

There are three approaches to achieve this (Hand 1981), Goldstein (1975), 

Bock and Diday 2000, pp. 235-293)

• linear estimation (Fisher);

•  quadratic estimation;

• non-parametric methods.

One of the most commonly used non-parametric methods of estimation of 

distribution density function is kernel density estimation. Equation (1) represents 

general form of kernel density estimator (Hand 1981)

\
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where:

f k -  kernel density estimator,



d -  dimension, 

к — class number,

«к -  number o f objects in £-th class,

/?k -  bandwith window for £-th class (a parameter),

K(.) -  kernel (Gaussian, Epanechnikov etc.).

In case o f symbolic objects space, density distribution is undisputable. The 

integral operator isn’t defined in this kind o f space and it’s not a subspace of 

Euclidean space either.

Bock and Diday (2000) introduce a replacement o f kernel density estimator 

for symbolic objects:

where:

p  -  number o f classes in the training set 

к -  class number,

4  -  kernel intensity estimator,

«k -  number o f objects in £-th class,

hj -  window bandwidth fory'-th class (parameter),

K(...) -  unified kernel for symbolic objects:

dj(x,y) -  dissimilarity measure for symbolic objects, one of the dissimilarity 

measures listed in chapter II.

Method of creation of decision trees for symbolic data proposed by Perinel 

and Lechevallier (2000) is based of construction of questions used for choosing 

the best split o f tree. In case o f ordered data (ordinal scale and intervals) the 

question has form

If value o f variable ľi is lover than constraint с ?

In case of nominal data the question may be stated as;

If value of 7i belongs to set V ? (V  is any not-empty subset of domain of 

variable).

«t p

(2)

dla d /( x ,y ) < h / 

dla d /( x ,y ) > h /
(3)

IV. SYMBOLIC DECISION TREES



Symbolic decision tree algorithm can be written (in main steps)

• Start

• Repeat until set o f admissible nodes is not empty 

о For every admissible node t

о For eveiy question q

■ Split node t for two temporary terminal nodes / and r

■ Calculate sizes of / and r nodes

■ If sizes o f 1 and r sufficiently big

• Calculate the quality o f split W(t,q)

•  If W(/,^) greater then threshold value 

o q become candidate-question for t

• else

о reject question q

• If exists at least one candidate-question for t 

о chose the best question

• else

о mark t as terminal node 

о if there is no node to split

■ STOP 

о else

■ chose the best split between all nodes

V. SIMULATION

500 (100 for each model) symbolic data sets have been generated for 

simulation purposes. Parameters o f each model are described in table 3.

Table 3. Models of simulation

Model
Number of 

variables

Number of 

clusters
Type

Learning

set

1 2 2 intervals 200

2 2 2 intervals 200

3 3 3 intervals and calegorial 160

4 2 5 intervals 240

5 4 4 intervals and categorial 160

Source: own research.

Table 4 are 5 presents result o f discrimination for every model with no 

noisy-variables, 2,3,5, and 10 noisy variables. For each scenario average error 

ratio is calculated for Kernel Symbolic Discriminant Analysis (KSDA) and for 

discrimination with use o f Symbolic Discrimination Trees (SDT).



Table 4. Average error ratio (test set is 5% of learning set)

Noisy

var
0 2 3 5 10

Model KSDA SDT KSDA SDT KSDA SDT KSDA SDT KSDA SDT

1 0.11% 9.06% 9.34% 9.17% 14.34 9.43% 21.23% 9.85% 63.24% 10.12%

2 0.17% 8.07% 8.73% 8.14% 18.25% 8.27% 25.17% 9.05% 58.73% 11.43%

3 0.20% 4.34% 11.23% 5.06% 17.80% 5.78% 28.11% 6.12% 49.56% 8.10%

4 0.14% 9.19% 9.42% 9.56% 16.95% 9.74% 25.01% 10.12% 66.13% 11.50%

5 0.43% 8.43% 12.03% 8.66% 16.25% 9.01% 19.55% 9.67% 61.34% 12.07%

Source: own research with use of SymboliDA package written by authors in R environment.

Table 4. shows result with assumption that test set is 5% of learning set and 

table 5 show results of simulation in case o f test set equal 20% of learning set.

Table 5. Average error ratio (test set is 20% of learning set)

Noisy

var
0 2 3 5 10

Model KSDA SDT KSDA SDT KSDA SDT KSDA SDT KSDA SDT

1 0.19% 9.04% 9.68% 9,41% 14,23% 8,99% 23,32% 10.12% 66.17% 10,34%

2 0,34% 8,12% 9.43% 8.43% 18,78% 9,03% 27.41% 8.97% 59.78% 11.22%

3 0.25% 4,24% 11,87% 5.76% 18.66% 5.90% 29.05% 6,03% 50.78% 7,89%

4 0.56% 9,09% 9.95% 9.29% 17,97% 9,47% 25.85% 10,01% 67,64% 11,34%

5 0.63% 8,13% 13.43% 8.43% 17,15% 9.41% 20.21% 9.88% 62,45% 12,53%

Source: own research with use of SymboliDA package written by authors in R environment.

VI. FINAL REMARKS

For artificially generated symbolic data with no noisy variables kernel 

discriminant analysis gives better results than discrimination with use of 

symbolic classification trees. But while the error ratio in first case rises rapidly 

when noisy variables are added to data set, in second case number o f incorrect 

predictions is growing much slower.

An open issue for further research is development o f method o f removing 

noisy variables in initial stage of discrimination procedure of symbolic objects 

similar to HINOV (Carmone et al. 1999) method for clustering.
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SKUTECZNOŚĆ DRZEW KLASYFIKACYJNYCH DLA OBIEKTÓW  

SYMBOLICZNYCH A ZMIENNE ZAKŁÓCAJĄCE

W rzeczywistych problemach badawczych często oprócz zmiennych istotnych 

mamy do czynienia ze zmiennymi zakłócającymi (nieistotnymi). Nie zawsze można 

dokonać wyboru zmiennych istotnych, np. za pomocą metody HINoV, lub 

zmodyfikowanej metody HINoV. W artykule porównano efektywność wykrywania 

znanej struktury klas za pomocą drzew klasyfikacyjnych dla obiektów symbolicznych 

oraz jądrowej analizy dyskryminacyjnej obiektów symbolicznych w sytuacji, gdy mamy 

do czynienia ze zmiennymi zakłócającymi. Badanie efektywności przeprowadzono na 

symulowanych danych symbolicznych w różnych modelach. Każdy z modeli zawierał 

znaną liczbę klas. Dodatkowo do każdego modelu dodano różną liczbę zmiennych 

zakłócających.


