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THE MINORITY GAME AND QUANTUM GAME THEORY

Abstract. This paper builds up on proposed convincing procedures telling how to 

quantize well-known games from the classical game theory. The thesis introduces some 

simple models of quantum games. At first, the prisoners’ dilemma in classical and quan-

tum version is described. This simple model has many practical applications in econom-

ics, one example being frauds in cartel agreements. The next model of quantum game is 
the quantum market game, described with the help of the quantum harmonic oscillator. It 

is known that quantum algorithms may be thought of as the games between classical and 

quantum agents; therefore, as the last example the quantum minority game is introduced.
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I. TH E QUANTUM GAM E -  DEFINITION

In recent years there appeared many articles on the subject o f quantum 

games. As it turned out many situations in quantum theory can be reformulated 

in terms of game theory. The quantum game can be defined as strategic ma- 

noeuvering of quantum system; the essential elements of quantum game are:

-  a definition of the physical system which can be analyzed using the tools 

of quantum mechanics,

-  existence of one or more players (particles) who are able to manipulate the 

quantum system,

-  players’ knowledge about the quantum system on which they will make 

their moves or actions,

-  a definition o f what constitutes a strategy for a player,

-  a definition o f strategy space for the players, which is the set of all possi-

ble actions that players can take on the quantum system,

-  a definition of the pay-off functions or utilities associated with the players' 

strategies.
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For example, a two-player quantum game is a set consisting of a Hilbert 

space H o f the physical system, the initial state p, the sets SA and Sß o f allowed 

quantum operations for two players, and the pay-off functions or utilities PA and 

Рц. This set can be written as

T = {H ,p ,S A,S B,PA,PB). (1)

II. THE CLASSICAL MODEL OF THE PRISONERS’ DILEMMA

Prisoners’ dilemma is a classical game and the rules of this game are as fol-

lows. Two criminals are arrested after having committed a crime together and 

wait for their trial. Each suspect is placed in a separate cell and they have no 

contact with each other. In this way no one knows whether the other confesses 

his guilt or not. But we have no conclusive evidence that prisoners are guilty. So 

we have to view the case as circumstantial one, and a size o f sentence depends 

on whether they will talk or not. If neither suspect confesses, they are sentenced 

to three years’ imprisonment. If one prisoner confesses and tells about complic-

ity o f the other, then the priosoner who confesses is sentenced to two years’ im-

prisonment, while the prisoner who did not confess goes to prison for 15 years. 

If both prisoners confess, then both are sentenced to eight years’ imprisonment.

In accordance with this, each suspect may choose between two strategies:

• confessing (D -  defection)

• not confessing (C -  cooperation).

The following matrix o f payoffs can represent the game:

prisoner A

C D (2)

'(3 ,3) (2,15)"

J '5 ,2 )  (8,8 ) ,

The dilemma is that for either choice of the opponent it is hence advatageous 

to confess (D) but on the other hand, if both confess (D, D) the payoff remains 

less than in the case when both cooperate (С, C).

We will use a generalized matrix which is given as:

prisoner A

C D (3)

V )  M YС
prisoner В

where s < r < и < t.



III. THE QUANTUM MODEL OF THE PRISONERS’ DILEMMA

The physical model of the prisoners’ dilemma was given by Eisert, Wilkens 

and Lewenstein (1999). In this model the authors suggested that the players can 

escape the dilemma if they both resort to quantum strategies. The physical model 

consists of: a source making available two bits, one for each player; physical 

instruments enabling the players to manipulate their own bits; a measurement 

device that determines the players’ payoffs from the final state of the two bits. 

The classical strategies С and D are assigned two basis vectors |C) and |l>) in 

Hilbert space. The state o f the game is described by a vector which is spanned 

by the classical game basis |CC), |CD), | DC) and |DD).

The initial state is written as:

J \C C )  (4)

where j  is a unitary operator known to both players. All strategic decisions 

belong to a strategic space S. The prisoners’ strategic decisions (moves) are as-

sociated with unitarity operators UA and UB. So when players make a decision 

the state of the game changes to:

(u A ® Ú B) j \C C )  (5)

while the final state of the game is given by

|'F/ ) = J +(í7/ í ( g ) í / J i |C C )  (6 )

The payoff of player A will be defined as

(CC  I ^ ) | 2 + 5 1 (CD I 4 7  ) |2 + / |(£>C I Ч^ 2 + и I \{DD I Wf ) (7)

where the quantities r, s, t and и are from the classical prisoner dilemma matrix. 

The payoff o f player В is obtained by interchanging s <-» / in equation (7).

Eisert J., Wilkens M. (2000) use the following matrix representations of uni-

tary operators o f their two-parameter strategies:



/

u{e,</>)=

e * cos-
в

— sin -
e

. в  
sin —

2

е~'ф cos— 
2 )

(8)

where 0 <,в< ,л  and 0 <,ф<,— .
2

The classical dilemma must be represented by quantum model, to this end 

the authors imposed additional conditions on J :

J ,D ® b ] =  0 [j,Z)<g)ć]=0 = 0 (9)

where С and D  are the operators corresponding to the strategies of confessing 

and not confessing, respectively.

A unitaiy operator satisfying the conditions (9) is

J  = ex p |/>  D ® D I2 \ ( 10)

where /е [о ,л " /2 ] . The operator J  can be called a measure o f the game’s en-

tanglement. The quantum game reduces to its classical form for y  = 0. For y  = 

л/2 the game is maximally entangled and the classical Nash equilibrium Ď ®  Ď  

is replaced by a different unique equilibrium Q ® Q  with Q ~ f7(0,л / 2). The 

new equilibrium is also found to be the Pareto optimal, while in the classical 

game the Pareto optimal and the Nash equilibrium are not the same. That is why 

Eisert, Wilkens and Lewenstein claimed that in its quantum version the prisoner 

dilemma disappears from the game, and quantum strategies give a superior per-

formance if entanglement is present.

IV. QUANTUM M ARKET GAMES

The quantum market games provide the next example o f application of 

quantum games to economy. Many papers on this subject were written by 

Piotrowski and Sładkowski (2002). They proposed a guantum-like description of 

markets and economies where players’ strategies belong to Hilbert space. The 

quantum model of market is the following.

For simplicity the authors assume that there is only one asset on the market. 

The asset is distributed in units 1G o f price c. Then the £-th player implements



a strategy, which is dentoted by and declares the participation of his whole

capital in the game. The whole capital consists o f sk units of asset and dk mone-

tary units (sk > 0, dk ^ 0). An arbiter considers the data {\'¥)k, sk, dk \ coming

from all traders and decides on the actual participation o f the k-th trader in the 

market turnover. The authors consider an inclination o f player to reach a transac-

tion with different prices.

Let the real variable q

q = \x \c -E ^ n c )  ( 11)

denote a value of logarithm o f the resignation price over which the k-th player 

gives up the purchase of asset. E(ln c) denotes the expectation value o f (In c). 

The variable p

p  = £ ’( l n c ) - l n c  ( 12)

concerns the situation in which the Аг-th player sells the asset according to his 

strategy Suppose the strategies belong to Hilbert spaces Hk and the

only attempts of influance on quantum phenomena from outside are possible by 

means of classical objects.

The state of the game we can write as

( i3 >
к

Piotrowski and Sładkowski define the hermitan operators o f demand Qk and 

supply Pk, which act in Hilbert spaces. The operators Qk and Pk are o f counter-

part’s of position and momentum. The capital flows resulting from an ensemble 

o f simultaneous transactions correspond to the physical process of measurement. 

A transaction consists in a transition from the state of players strategies | vTi)m to

the describing the capital flow state

< l 4 >

where

к к



is the projective operator given by the division a  of the set of players {k} into 

two separate subsets = that is those buying at the price e ‘kd and

those selling at the price e~Pk' in the round of transaction in question. The algo-

rithm A (an arbiter) determines the division of the market a, the set of price pa-

rameters [qk j, p k j and the set o f values of capital flows.

The set o f values of capital flows is fixed according to the interpretation o f 

cumulative distribution function

" i ' M i i L ,  d «

i . m  4

as the probability that the player |'P )ł is willing to buy the asset at the transac-

tion price с or lower. The cumulative distribution function which describes the 

probability o f selling by the player |Т ) А at the price с or greater is defined as

I n - 1,  , ,  |2

(i7 )

The risk inclination operator is defined by the use of the equation of quan-

tum harmonic oscillator:

H(Pk,Qk):= ^  ~ Pk^  + т(° г№к-Яко) (]8)
2m

where

.  Ä  _ _ i № ľ k  „  

, № > *  ’ » № > .  ' e '

In equation (19) в  denotes the characteristic time of transaction which is 

equal to the average interval beetwen two opposite transactions of one player; 

m > 0 measures the risk asymmetry between buying and selling positions. The 

characterization o f quantum market games is described with the help of quantum 

harmonic oscillator. The constant hE describes the minimal inclination o f the 

player to risk. In view of an uncertainty relations the constant hr, is equal to the



product of the lowest eigenvalue o f H{Pk, Qk) and the minimal interval 20  dur-

ing which it makes sense to measure the profit.

Because in general case the players observe moves o f other players and of-

ten act accordingly, the operators Qk do not commute. Therefore, Piotrowski and 

Sładkowski consider noncommutative quantum space and assume that

[Q j,Q k ] = i®ejk. (2 0 )

The analysis of the solution of multidimensional harmonic oscillator [6 ] im-

plies that the parameter в  modifies the constant hE •-» ^h j;• + 0 2 and, accord-

ingly, the eigenvalues o f H(Pk,Q k). It means that moves performed by other 

players can diminish or increase one’s inclination to take risk.

V. THE QUANTUM MINORITY GAME

The minority game is a model o f speculative trading in financial market 
where agents buy and sell asset shares with the only goal of profiting from price 

fluctuations [I]. The basic idea is that when most traders are buying it is profit-

able to sell and vice-versa, so the minority group always wins. We have N  agents 

and each of them formulates at eveiy time step a binary bid 

(sell/buy) a, (/)= {0 ,l}.

This model can be considered as information processing system where the 
players’ strategies are the input and the payoffs are the output [4]. The player 

can choose between two strategies, so the choice can be encoded in the classical 

case by a bit. In the quantum theory, the bit is altered to a qubit, with the basic 

states 10), |l) representing the classical strategies [2]. The initial state is de-

scribed as

|% ) = |00...0) (21)

so it consists o f one qubit for each player. If the entangling operator J  acts on 

100...0), the initial state is comerted into an entangled Greenberger-Horne-

Zeilinger state (GHZ state). Pure quantum strategies are local unitary operators 
acting on a player’s qubit. The state before the measurement in the jV-player 

case can be computed by



l ' í ' i M ' r . }

|4 ’2)=»(м |в м 2 в . . . в м ж)|4<]) (2 2 )

where М к (k = 1, TV) is an unitary operator representing the move of the 

player k. In the same way as in the quantum prisoners’ dilemma the entangling 

operator J  commutes with any direct product of classical moves, so the classi-

cal game is simply reproduced if all players select a classical move.

Assume that the players do not make use of their knowledge o f past behav-

iour. The classical pure strategies are then “always choose 0” or “always choose 

1” . The unitary operator, which provides a counterpart of pure quantum strategy, 

is written as

M { e , a , ß )  =

e cos

-ip

(в!2) 

in (ť?/ 2 )

ie'p sm{e H )

e~'a cos { e /2 \
(23)

where в  e  [о, л \  and a , ß  e [-  л ,  я ] . The entanglement operator is given by

J ( r )  = exp • У
I —  <7,

2 , 4 A У
(24)

en-with y e  [0 , ^ / 2 ] and iá x = М (л , 0 ,0). For у  = л /  2 we have a maximal 

tanglement in GHZ state. Operators o f the form м (в ,  0, О) are equivalent to 

classical mixed strategies, with the mixing controlled by (9, since when all play-

ers use these strategies the quantum game reduces to the classical one.

It has been found (Flitney A., Hollenberg L. (2007)) that in the four player 

quantum minority game an optimal strategy exists:

1 r
$  A/A’ — I— COS 

л/2  v
M

f л  - л  л л

У ’ Т б - ’ Тб
,(2 5 )

here /  is the identity operator, /  = Л/(0 ,0 ,0). The strategy sNE is seen to be a 

Nash equilibrium by observing the payoff to the first player as a function o f his 

general strategy M (0, a , ß )  while the others play sNE.



VI. CONCLUSION

This paper shows that in the context of the quantum Prisoners’ Dilemma, the 

players escape the dilemma if they both resort to quantum strategies. Quantum 

computing gives rise to new Nash equilibria, which belong to several different 

classes. Classical games assume new dimensions, generating a new strategy 

continuum, and new optima within and tangential to the strategy spaces as 

a function of quantum mechanics. A number o f quantum games can also be 

mathematically distinguished from their classical counterparts and have Nash 

equilibria different than those arising in the classical games.
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GRA MNIEJSZOŚCIOWA I KWANTOWA TEORIA GIER

Artykuł zawiera propozycje procedur kwantowania gier dobrze znanych w klasycz-
nej teorii gier. Przedstawiono proste modele gier kwantowych. Jako pierwszy został 
omówiony dylemat więźnia zarówno w wersji klasycznej jak i kwantowej, który ma 

wiele praktycznych zastosowań w ekonomii, jednym z przykładów są oszustwa w poro-

zumieniach kartelowych. Kolejnym modelem gry kwantowej jest kwantowa gra rynko-

wa opisana za pomocą kwantowego oscylatora harmonicznego. Jako ostatni został 

omówiony model kwantowej gry mniejszościowej.


