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Abstract

In this paper wc investigate whether in the statistical inference for shapes o f economic systems it is 

useful to modify least squares methods (commonly used Procrustes approach) by applying data 

depth concept. In the paper theoretical considerations arc illustrated with examples ot 

multidimensional financial time series.
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1. Introduction

A statistical analysis of shape could be a valuable approach both in a prac-

tice and in theory of economics. Namely notions of an average shape and 

a variance of shape could be adequate for an indirect verification o f theoretical 

concept according to which capital stored in a certain system is described by the 

ability o f this system to perturb a certain space of values, the flow oi capital is 

connected with internal stresses in the substance of the capital carrier. The 

notion o f average shape could correspond to stress operator and the notion of 

variance o f shape could correspond to an amount of energy stoied in the 

economic system.

According to D. G. Kendall the shape o f an object is all the geometrical 

information that remains invariant when location, scale and rotational effects 

are filtered out from an object. Within statistical analysis o f shape, the



objects of a considered population are studied on base o f m, /^-dimensional 

indicators (landmarks, markers), which are points placed on objects, corre-

sponding with certain essential mathematical or content-related properties of 

these objects'.

Relatively well known2 and valuable for applications in economics is 

analysis of planar shapes. Considering two centered configurations (centered 

coordinates of landmarks):

У = (У\>"чУк)Т and w = (wv ...,wky  both in C* and y * \ k = 0  = w*\k ,

it is convenient to use the following complex regression model allowing 

introducing of Prokrustes distances between shapes:

y  = (a + ib)\k +ße'°w + £ (1)

where a + ib translation, ß  > 0 scale, 0 < в  < 2 л  angle o f rotation, s  k  x 1 

complex error vector.

Full Procrustes distance between complex configuration w and у is given

as:

</,-(w,y)= inf
У W ,o

í l - j O *
(2)

Let us consider a situation, where a random sample of a configuration 

w ,,...,w n is available from the point of view of a perturbational model:

w , - y A  + Д е'0,(И+Е/). (» = 1» «) (3)

y{ e С translation vectors, ß- e M + scale parameters, 0 < 0 < 2 л  angle of 

rotation, e, e C -  independent errors of zero average,ц average shape in the 

population.

We obtain the estimator of the Procrustes average shape [Д] by 

minimizing, relative to ц , the sum of the squares of full Prokrust distances from 

each w (. to unknown average having a unit quantity:

1 Detailed introduction into the problem could be found in e.g. K o s i o r o w s k i  (2004).

2 Details o f the problem can be found in the following inspiring work D r y d e n ,  M e r i d a ,  

(1998).



[A]= arg inf dI (wr, ц) (4)

Note that Procrustes mean is estimator of least squares method.

By estimating average Prokrust’s shape we receive so called Procrust’s 

cordinatcs (Procrustcs fit) corresponding to the values which the estimated 

perturbational model (3) takes on. In the planar case, for Piokrust s

coordinates are given:

To obtain a general measure of shape variability, it is convenient to use the 

root of the average square of the distance between each configuration and 

Prokrust's average [ | i ] . We denote this measure as RMS(dľ ) :

A limitations of statistical models commonly used within statistical analysis 

of shape are high restrictions concerning the assumptions for the examined 

phenomenon. Namely we mean a multivariate normality or even isotropy 

assumption for probability distributions generating configurations. The proposed 

estimators are not robust (e.g. Procrustes mean is least squares estimator and it is 

well known that least squares estimators have very low replacement breakdown 

point).
That facts motivate author to propose robust modification of Procrustes 

analysis referring to data depth concept.

The notion of the depth of a point х е Г ' ,  d >1, being a realization of 

some (/-dimensional random vector X with the probability distribution P , is 

introduced basing on a special function called the depth or the depth function4. 

The function of depth assigns to every point a real positive number from interval 

[0, 1] being the measure of that point’s “centrality” in regard to the 

P  distribution. Usually, a point, for which the function of depth assumes the 

maximum value is called d-dimensional median (an average, il theie are more

3 A rich overview of issues connected with that matter with references to original works can 

be found for instance in R o  u s s е е  u w, L e r о у (1987).

4 Details o f  the problem car: be found in the following inspiring work Z u o ,  S e r f  l i n g  

(2000).

w f = w*r\vr/(w*w,) , ( ; ' - ! ,  ..., n)

(6)



such points than one). In case we do not know the form of the F  distribution, but 

we have an и-element sample from X , -  x , , x H then we can replace the P  

distribution with its empirical version of Pn.

As  an example of depth let us consider sym m etric p ro jec tion  dep th  (PD) 

that defines the outlyingness o f a point x to be the worst case outlyingness of x 

with respect to one dimensional median in any one-dimensional projection that 

is:

where X has distribution P, Med denotes the univariate median, MAD  denotes 

the univariate median absolute deviation MAD(Y)=Med(| Y-Med(У)I)■

For further considerations it would be useful to introduce following notions: 

The set {x e IRrf : PD{\)  = a} is called a  projection level set or contour of 

projection depth a. The set PDa (X) = {x e  K1' : PD {\,P) > a} is referred to as 

the region enclosed by contour of projection depth a, a  -  p ro jec tion  trim m ed  

region or a  -  central region.

The projection depth has very high Huber’s replacement breakdown point, 

has also bounded Hempel’s influence function on a  trimmed region for certain 

a  greater than zero. Under mild conditions on probability distributions in 

a population an empirical projection depth median is unbiased and strongly 

consistent estimator o f a center of distribution for centrally symmetric 

distributions5.

In order to give some arguments for the relation between the capital flow 

and the internal stresses in the substance o f capital carrier we interpret an 

average shape of stock branch index as a stress operator which enables us to 

express an activity of an inner force resulting capital flow. We interpret 

RM S{df) -  the measure of variability o f shape as an amount of that force. 

Namely during n stock sessions we analyze к stocks o f certain stock index

(7)

2. Propositions o f robust procedures 

o f analysis o f shape

5 Interesting theoretical considerations relating to the issues can be found in e.g. Z u o  

(2004).



considered with respect to a daily increase/decrease (change %) o f price X t, 

(/ = 1 , «) and a daily volume Yi , (i = 1 , n ) .

Figure 1 and 2 illustrate result of estimation of average Procrustes mean and 

RMS(clF) of stock index WIG BANKS in two periods: 2004.11.12-2005.04.20 

and 2005.04.21-2005.09.28. The estimation was made on base of raw data.

Fig. 1. Icon o f Procrustes mean shape -  WIG 

BANKS -  raw data -  2004.11.12-2005.04.20

Fig. 2. Icon o f Procrustes mean shape -  WIG 

BANKS -  raw data -  2005.04.21-2005.09.28
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In case of financial markets both assumption of multinormality for 

coordinates of markers (stocks) and nonexistence of outlying observations are in 

general not fulfilled. That facts motivates us to following propositions:

First proposition -  robust estimation of average shape 

and variance of shape

Let us consider k x  2 dimensional time series consisting «-elements e.g. 

к  stocks of certain stock index considered with respect to daily increase of price 

Xj  (/' = 1 , ri) and daily volume Y, (i = 1,..., «). Let us assume k x 2 «  «.

1. We treat observations as «-realizations of /cx2  dimensional random 

vector Z  j = ( X iJt YiJt X 2J, Y2J.....X kj, Yv ), (j  = 1,...,«). ж

2. We calculate the empirical projection depth PD(Zj,Fn) for each

lj - Уц—> хю>Ук/)> U = ]> -• ”)■
3. We omit say 10% of the observations with minimal empirical projection 

depth values PD(Zj,Fn).

4. For the rest of observations we do standard generalized Procrustes 

analysis.



Fig. 3. Icon of Procrustcs mean shape -  WIG 

BANKS -  10% PD trimming -  2004.11.12- 

2005.04.20

Fig. 4. Icon of Procrustes mean shape -  WIG 

BANKS -10%  PD trimming -  2005.04.21- 

2005.09.28
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Figure 3 and 4 illustrate results of estimation using first proposition of 

average Procrustes mean and RMS(dľ ) of  stock index WIG BANKS in two 

periods: 2004.11.12-2005.04.20 and 2005.04.21-2005.09.28.

Sccond proposition -  robust estimation of average shape 

and variance of shape

Assume that we have a sample x , , ..., x„configuration matrices from 

population X e.g. к  stocks of certain stock index considered with respect to 

daily increase of price is k  x 2 configuration matrix.

1. For sample x,, xn we calculate Procrustes mean.

2. We calculate approximate tangent coordinates v.......... e.g. Procrustes

residuals for sample x ...... ... (the pole of tangent projection is

Procrustes mean for that sample).

3. We calculate empirical projection depth d l t ...,dn for tangent 

coordinates v |; ..., vn.

4. We omit say 10% observations x,,..., x„ with minimal values of tangent 

coordinates depths d{, . . . ,dn.

5. For the rest o f observations we do once again standard generalized 

Procrustes analysis -  we calculate Procrustes mean.

Remark: We could consider successive trimming -  in step four we omit 5% 

observations next we go to step five and then we come back to step one etc. We 

continue the procedure until omitting appropriate fraction o f observations. The 

remark is tied with discrimination between outlying observation and influential 

observation in LS method.



Fig. 5. Icon of Procrustes mean shape -  WIG 

BANKS -  10% PD trimming of observations 

with outlying residuals -  2004.11.12— 

2005.04.20

S o u r c e :  our own calculation, data 

Money.pl.

Fig. 6 . Icon o f Procrustes mean shape -  WIG 

BANKS -10%  PD trimming o f  observations 

with outlying residuals -  2005.04.21 — 

2005.09.28
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Figure 5 and 6 illustrate results of estimation using second proposition of 

average Procrustes mean and RMS(dF) o f  stock index WIG BANKS in two 

periods: 2004.11.12-2005.04.20 an d 2005.04.21-2005.09.28.

Third proposition -  induced by depth function rank test equity 

of two average shapes

We have two samples x , , .... x„ and у ..... . y(l of configuration matrices from

populations X and Y. We are going to test following hypotheses (average 

shape in population X equals average shape in population Y ) :

• [Их ] = [łlY ] vs- H o :[H xM H v]

1. We do two generalized Procrustes analyzes for the sample x , , ..., x„ and 

for the pooled sample x , , ..., x„, y , , y „ .

2. We calculate twice approximate tangent coordinates e.g. Procrustes

residuals -  for the sam plex,,..., x„ (the pole of tangent projection is

Procrustes mean for that sample) and for the pooled

samplex, , . . . ,xn, у у я x ,,...,x (1 (the pole of tangent projection is

Procrustes mean for that sample). Let us denote them correspondingly:

v* v* and \ X’Y \ x 'y w "  w "  vi >•••) v„ vi .................... .. i •••>” „, •



3. We calculate the empirical projection depth for tangent coor-

dinates v * , v* - let us denote them d*,. . . ,d^  and for tangent 

coordinates w ? ' * -  let us denote them
iX . Y iX, Y  i X . Y  tX.Y

« V , » •••> \ n > ^ W | '

4. We infer about the equity of mean shapes in populations X and Y on 

base o f Wilcoxon rank test applied to d*, . . . ,d*  and d* ’Y, d*' Y.

In order to indicate a quality o f the proposed test we conducted a 

simulation study. Namely we calculated 1000 values of above proposed 

Wilcoxon test statistic for 1000 samples generated using isotropic multivariate 

/-Student distribution with one degree o f freedom and with cr2 =1,1. Each 

sample consisted o f 100 observations of 6 points on a plane 

( 6 x 2 configuration). We considered three cases HO, K l, K2 -  representing 

null hypothesis and two alternative hypotheses with smaller and greater 

distance to null hypothesis (distance between shapes represented by sets points 

on a plane).

Figures 7-9 illustrates configurations HO, K l, K2 used as hypotheses.

Fig. 7. Simulation stu d y -n u ll hypothesis Fig. 8 . Simulation study -  alternative hypo-

thesis
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Fig. 9. Simulation study-alternative hypothesis



Fig. 10. Empirical density o f proposed test 

statistic under HO and К I -  1000 simula-

tion from isotropic multivariate t-Student 

distribution with one degree o f freedom and 

c?= 1.1

Fig. II. Empirical density o f proposed test 

statistic under HO and K2 -  1000 simula-

tion from isotropic multivariate t-Student 

distribution with one degree o f freedom and 

cr= 1.1
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Fig. 12. Empirical density o f Hotelling T2 test 

statistic under HO and К I -  1000 simula-

tion from isotropic multivariate t-Student 

distribution with one degree o f freedom and
■У . ,

Fig. 13. Empirical density o f Hotelling T2 test 

sttistic under HO and K2 -  1000 simula-

tion from isotropic multivariate t-Studcnt 

distribution with one degree o f freedom and

J =  1 . 1
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Figures 10-11 illustrates an empirical density of the proposed test statistic 

under MO, K1 and K2. Pictures 12-13 illustrates an empirical density of 

commonly used Hotelling T2 statistic in case of generated in simulation samples.

It is easy to see that for considered alternatives proposed test is better that 

Hotelling T2 test -  empirical densities of Hotelling’s statistic are nearly the same 

under null hypothesis and under alternative hypothesis -  so we can not 

discriminate shapes in statistical test (in case of multivariate normal distribution 

Hotelling’s statistic is better than our proposition).

3. Conclusions

We accept intuitively, that it is possible to describe any economic system 

with the use energy stored in a state of various kinds of capital. We agree that 

size and type o f capital defines the system’s ability to perform work, for 

example, the ability o f an enterprise to expand to new markets. One could, 

however, ask: “can general intuition be useful for building stochastic models of 

any particular economic system?” The notions o f statistical analysis of shape 

allows as to express activity of forces connected with internal stresses in 

substance of capital carrier -  this could be a starting point for further studies.

Stochastic models existing within statistical analysis o f shape6 are too 

restrictive for economic applications. Proposed in the paper procedures are based 

on projection depth function and in general on data depth concept. That 

approach is often described as nonparametric and robust alternative to classical 

methods. Thanks to application of depth function proposed in the paper 

procedures seems to be more accurate for economic problems because they are 

more robust on outlying observations and on departure from multivariate 

normality.
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Daniel Kosiorowski

O odpornych estym atorach przeciętnego kształtu

i wariancji kszstaltu

W artykule badamy czy w zagadnieniach wnioskowania statystycznego odnośnie do 

kształtów układów ekonomicznych użytecznym jest zmodyfikować estymatory najmniejszych 

kwadratów (powszechnie wykorzystywaną metodę Prokrusta) przez zastosowanie metod 

koncepcji głębi danych. W artykule rozważania teoretyczne ilustrujemy przykładami dotyczącymi 

finansowych wielowymiarowych szeregów czasowych.


