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ON DIFFERENT NOTIONS OF QUANTIFIERS
L. Introduction

Among - the most central notions of logic seem. to be quan-
tifier and quantification. Although these terms were introduced
in the 19th century, the very idea of quantification is older and
it can be traced to antiquity. The present paper will attempt an
explication of that notion. Aristotle's ideas of ',quuntitication
have close correspondence with modern notion of generalized quan-
tifier formylated by Lindstrom in opposition to classical guanti-
fiers of predicate calculus. Modern notion of a generalized quan-
titfier enabled the development of practical applications  in
linguistics and logic of induction. It is obvious that the two
classical quantifiers are useless in these subjects.

2._The notion of guantification
in Aristotle’s syllogistic

The earliest attempt to create a iyitil of formal  logic was
Aristotle’s syllogistic  Aristotle recognizes tnur"cntéporxculi
etatanents and specifies ‘the rules’ of inference for thewm. Dltogo-
‘rical statenento represent relations betuesn the 1ntorprotatxons ot
subjects and predicntzve uotds. ‘ :
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In set theoretlcal terus copulas '“d"; E”e!.‘?{', ;q" - can -60
interpteted as binary relations betuaen the subsots o! a domain of
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interpretation €, (i.e. the interpretation of "a" in E is the
relation of inclusion: for any X, Y S E holds (X, Y) € fJal iff
X €Y, where Ilall denotes the symbol “a“). Making use of Lind-
strdm’s generalized quantifier the above symbols can be treated
‘as generalized quantifier symbols characteristic for syllogistic
language. These symbols have set-theoretical denotations in the
modified -odel -theory.

On account of the development of nathemltics, modern ptedicate
logic with the classical notion of quantifier has been formulated.
However, in spite of its usefulness in mathematics and metamathe-
matics, Aristotle’s intuition of quantification has been lost.

3. Classical predicate calculus and its extensions

First-order predicate calculus is not a mere extension of sy-
llogistic. It has different and reacher dictionary and . syntax,
There is a significant difference of ayntacticalv roles between
copulas in sylogistic and ¢classical quantifiers in pre-
dicate calculus. Symbols ¥ and 3 are operators that convert pro-
positional functions to propositions; in the classical theory of
models they have no explicit interpretation, they are wusually
interpretated in the context of a detinition of satisfying a for-
mula beginning with quantifier symbol by a valuational function.

From the point of view ‘of llngulstXcs, predlcdta calculus
seems arti!lcial and uneufftcient ‘because of its poor possibility
to express ‘“quantitative uords ot nntural lanuuage.

The first step towards the extenslon of "expressive pouer ot‘
 predicate calculus consisted 1n the re!ornulating “of syllagistic

in terms of predicate logic. It was possible by introduction of
the symbols of quanti!tcrs of ltnited rangel. :

Saf it (vs,,) P(x) . (V) (5()—P(x))

CSiP i1 @s m) POX) = (V) (S() A~ P(x)
SefP iff (vs BT, | P(x) = (v;)(su)——»p(x))
S'o P ift (3s

)~ P(x) & (Vx)(S(x) A~ P(x))

1 See: 2. St up e c k l L. Bor k 0w s k', ‘.Elémenty;
logiki -atenatycznej i taorii uoogoéci Uarszaua 1984. Terelirad
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Thus the formulas of predicate logic become shorter - and their
syntax more adequate for natural language description. :
The next extention was the introduction of numerical quanti-
fiers?. ]
- For exactly m holds... -2umy, (m »0)

(2<0>)xA(x) ® ~ IxA(X)for m = O

i

(Zmy)xA(x) = Ix Xy (A(xl))A oy AA.(in) A x, ¢ ‘2

A A X X A A XA Y (“xml)_’“pof’

SR ARERL = x.)) for m >0

] m+1
- For exactly n doesn t'hold.., -Tixn), (n » 0)
;e xA(x) = Zenrx(~ A(x)) for n » 0
- For at most m holds.;. - E:[n].-n >0 _
Zm)xA(x) = Zeo>xA(x) v ... v 2<mxA(x) v
- For at most n doesn’'t hold... - [n], n » 0
ﬂ[ﬁ]xk(i) = MeorxA(x) v ... v <m>xA(x)

It is clear that both extentions are abbravxltlona of complex
formulas of predicate calculus. - ; ¥

The symbols belong to the class of t 1 rret-order
quantifier symbols and can be defined in terms of
classical quantifiers v and 3, within !lélt{order bra-
. dicate.logic.  The first real extension of 'prodlclia calculus is
due to Mostouski’, who Lntroduced quanti!tera ot othat classes,

6 Generalxzcd gnanti!lers of Nostouski

Une of @ne nost 1nportant‘_steps towards nqdern‘not!on of quan-

. tifier was made by HostouSki‘ - Mostowski presents an explicite uo?
del-theoretic . uerlnxtxon of quantx!iar as an interpretatlon of a

quantx!xer synbol.v ' : 2

2 See e. g. 'v U o t owsk 1 On a Generalization or Omuh
txfxers. "Fundanenta Nathanat1ca' 1957, vol CA. pp. 12 36. G
3 Ibiden. e '

 Ibidem.
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Definition 1°:

A quantifier limited to the domain of interpretation
E is a function Qe which assignes one of truth values 1, 0: to
each interpretation of one-argument propositional function F on E,
which satisfies the i nvariance condiction QCF) =
=Q(fg), where ¢ is a- g ecrmutation of €, such that

for a € E holds Fp(y(a) F(a).

By this definition, for every quantifier symbol theve is a
family of subsets of E that "“"satisfies"  its interpretetion (a qu-
antifier limited to E).

‘The invariance condiction enables to for-
mulate a very interesting number - theoretic r e-
presentation .of aquatifier. Let (m, m) be the sequr
ence of pairs of cardinal numbers satisfying the equation m + n =
= card(€). For each function T which assignes 1 or 0 to €ach pair
we put: '

Qr(F) = T(card{a eE: F(a) = {}. card{a € E: F(A) = 0})

Theorem 16:

'a) Qv is a quantifier limited to E.

b) For each gquantifier Qe limited to E there is a function T
such that Qr = Qe. _ s i ,

If Qv =Qe, then T is associated funection
ot Qe This nation is very useful in defining the specific quanti-
fiers by means of the conditions under which the associated
function of aquantifier posésses value 1.

Examples: : :
l{ Classical guantifiers

: 3E:mMm/0
; ‘ Ve :n =0
2. Numerical gquantifiers ;
: (mE: Mm=m
Zimle: m<m
.er <NYE: M = n
N nle: n <

5 Ibidem.
é Ibidem.
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3. Non-first-order quanuuers
, Ss: vn < X0 - for denumerably lany holds

'S"vt: m<Xo vm <Xo - for finitely many holds or for
finitely many doesn’'t hold '

4. Trivial quonhtiers (defined in set-theoratical ‘vterms.')'

F. : for every F holds Pe (F) =

Pe : for every F holds g¢e(E) = 0

It is also possible to define duals ad boolean
combinations of guantifiers. i at

Detinition 27

of Ql

Lét T(m, m) be associated fun c 1 n
A quantifier (*ewith associated f tion Te(m m)

un
= T(n, m)  is a dual of Q¢ (eg. 3e V

Definition 39,

Qe =~ Q' . iff Qe(F) =~ Q'€ (F)

Qe = Q% v 0% iff Qe(F) = Q'(F) v Q*(F)

Qe = Qe A 0’: ift OI(F) = 0‘("') I\ 0'(‘) .
for every F. - _ ) LR ORT KR

The present theoreticu backnround cnlhlqo ;o' .examine - tp_o
boolean algebra U of quantifiers nnuod to e-
numerable seteE, Qtlsuunornowthc ptaduct
three bonlean algebraa-", 5 5
R AR O'ngx({l. 0} ~, v, A)
where X = (P(N), ' ,u,n) and P(N) u a ponrut ot dl rul‘
numbers. (including 0). It occun that qutntuiors nt o 5 bolonq to
one of the four classes: lﬂul ‘Isel, |So-51 ,qhq'_ . _I‘SA~§ I
,represented by the triplas of @ tespactively* O R Tl
| : POOLEn x P00 x {0

32 P(N)anin x P(N)tin x{0
o\, .p.‘(u)inf’)n x P(N)fin x {1

&4

PR Rl

o Toibiden.
? Iniden.’
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P(N)infin x P(N)fin x {1}
P(N)intin x P(N)intin x {0}

The class Hl ge ] is theclassof first-order  qu-
antifiers. Dther quantifiers can’t be defined in terms of .VE and
3¢ only. : . :

Clearly, associated functions ofMstowski's
generslized quantifiers of U are of the
form mRm, wmRn and their boolean combinations, where R is a rela-
tion on numbers: "=", “<“; "M, g™, "3" and n, m < card(E). It
is possible to express other interesting quantifiers not considered
hau,' e. g. for more than half holds...: m>n .

Mostowski managed to give an e xp l ic it definition of
a quantifier as an interpretation of a quantifier s ym-
b o 1 and pointed out how to define specific quantifiers by means
of set theory or a s s o ciated functions. Mo~
stowski didn’t use terms of theory of models but
~his ideas were continued by Lindstrtm who :ouhd their model-the-
oretical form. : :

5. A formal model-theoretical interpretation of quantifiers

A linal gane*a!ization of s notion of a quantifier was intro-
duced by Lindstrim. Lindatrbu has given a formal model-theore-
tical definition of a generalized qo:antys LAeT
as an interpretation of a quantifier symbol.

_Qa(;n;t;bn'Q‘oz i v
A quantifier Q is a Riqns of relational struao-
tures of type te N such that Q is closed 'under isomor-
phism. 3 '
Choosing a special domain of 1nterpretatxon we get a detnnxtlon
ofa generalized quantifier e Y-amite d
to € asa rulatlonal structure of type t e N

Q

e <E, 31 creth, ..., R, :r(e‘"» .

’ P. Lindstr 6 n. Ftrat Order Predicate Logic uith Ge-
noralized Ouantitiers, “Iheoria” 1966. pp. 186- 195 : ¢ ;

lbldo-
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closed under pauutatlon'e of E. The type t = <tl' ceey b )(t > 0)
is a -sequence of arities of relations Rys covs Rn

It is obvious that Mostouskl s generalized q u-
‘antifiers area special case of Lmdstraa‘c, as they are
relational s_tructuras_oltyps(l) '

0 = <E, R g P(EY

The copulas of Aristotla s syllogistics afe 'qu‘antit_‘ler symbols
ot type 1. 1>, e.g. ; :

llal ‘-<£ a :P(E) R2=P(E) Rl - R, = I)

'Lmdstrﬂa' ideq ol quantxticst!on seems to be a ucnetau—t
‘zation of ancient intuittons of Anatotiq, it unl be gbvious when
"axaninina logaje it . i'ndaes tio n hasad on. g.e n e-
ralized: quantttlere.' &

The notiagn ot @ ~type of a quant 1"1 B 3 I
_bound. to syntactical role of a . respective quantifier
symbol. 'D.ota qenet31120d ‘' rst-sorder
predicate logic. If te=dt, ¥ v _tn').- then.n ex-
presses number of. tornulasv and t‘ »Inuuber of. vvarlablqg i each
formula, bound by Q, e.g. = 3 ; S R

’3 Qxll...xlt ltl. an.. xnt ('l"l...‘ )

Let M. be: n.'voluationnl functton (undcr‘
“interpretation’']l in a donin E). Every !unctlon Mg Cand’ formula &
nxa relutional atsuctuto‘otntypot.;-'

‘ : [ \E ”] {“ll.."."‘ ‘l.tl) ‘ E 1' ’tst[".‘ (.ll/“ll, ;-..
g ’m/"m) *13} :

SohL A g ' 'ntn/"ntn’ ’n”’

- where ili ls an ob.’lect ot E, 'such that me (x B "1;‘]. lnd
..sts.![_ﬂ'e" ) y § i] oeans ‘that . Mg aattarus thq suh-tot-uln 'i‘ )
. Les PJ and Qg interpretotiona 1 in. E g a ptedicatof‘
‘symbal P, of anty L and '8 quantifiar Q6 en € t n 1.4 zed:
'txrst-order pradlc.to logtc umoxtqn-v;
_slon ot ti;stnorder predxcate logtc (uith wantlty) by addmg'.’
generalizod quantitiars:; of nuous types.;';'

. {(n p,.... antnl c E“‘x 8“’["’: (' 1”‘1"
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Iho‘doflnition below is an inductive definition of satysfying a
formula by a valuational function M, .

Definition 5'!.

L. stst[ﬂu q Pj('ji' baists xJ;)] i1t <M (le), veey Mo (xJn)>
CP,. . '

€

y - stst[ﬂu » X = ol At M (k) = M (xq).

3. staf[M ., %] uhera $ begins with quantifier sym
bol 0 ittt [m, ,¢] €0,

Examples:

1. Well known sentential connectives:~, v,— , A ,e>, are in
terms of Lindstrbm qu an t i f i er symbols of type <02 and
<0, 02, as their interpretations are relational structures “of
arities 0. This resembles  tukasiewicz’s notation of sententional
connectives. : ' : .

2. Let W, be a quantifier of type <1, 1>, <E, Rl' R,‘,)'GHE ifre
card (R,) > card(R,). The quantifier denotes: There are no less...
then... 2 _ .

The examples show the utllity of Llndstrﬂlédpncapi of a quan-
tifier. The next chapter deals with the practical applica-
tion of this idea, | ;

. 6. Practical applicationi of a abdarn'notibn
of a generalized quantifier

Accordinqu to Aristotle’s intuitien, the most important quan-
tifiers in the natural language investigations are of the type
€1, 1> since they fit for the specific syntax of a natural lan-
guage. They were thoroughly examined during last ten years.

The studies were started by Batuise and Cooper12 who treat a
quantifier as a noun phrase “NP: ‘

1 ihidem.

J. Barwise, R. Co 6bp e r, Generalized Quantir
fiers and Natural Language. “Linguistics and Philosophy” 1981,
No. 4,  pp. 59—21 vy e & »



On different notions of manttttien ' 93

Q (quantxtist) = NP

0 (determiner) Set expresion -

Examples:
Every man | {x I manl < x}

-
§ Two boys | {X card( N boy I'n Xx) = }
I most women i = {X: card( Il woman ll A X)> card(luounll -0},

I Every (thing) B ={x: x = €}
where every, two, most etc, are determiners. In terms
of Barwise and Cooper interpretation every quantifier is of type
<1> and is closely related to the quantifier of limited ran-
p e. ; A
The main goal of 'Barwise and Cooper’s paper was to formulate
a formal language LGQ capable of formalizing a fragment of En-
glish. The LG6Q syntax is closely related to the Enblish syntax,
e.g. the special function in LGQ is assigned to a term "thing"
which will manifold compound expraasiona llke 'ovqrythlng“; “not-
hing", “something".

Other papers coacarnxng quantifiers in natutnl languaoel3 deal
with a quantifier identified with a determiner (it is of type
<1. 12. As quantifiers are binary relations on subsets of E it
is possiblo-td impose some condttlbna on them. First condition is
a universa l one.f 1t is altla!ild by all quanttrtars.

CONSERV. (conservauvity) T
For every E and every A, B [ holda QEAB ut OSA(AM)

This condiunn uplus ror exa-pla that e. g. sona men are run- s
ning -iff some men are tunnmu men, Second condttion is not a uni-
versal one. It is not satunw by some spachl qulntuteru e.g.
many, some, tau, a few. ;

" QUANT. (qunntity) ‘ ¥4 : : .
For every E; E', every bijection ¢: E-—-l E' and ovary A, B c E
holds: QA8 ur n,.;(A)ﬁ(s) AL s Zeis ;

13 See: J. van B e n t he n, Questinns obout ' uuanttuerl, :
"The Journal of Symbolic Logic" 1984, ‘vol, 49, pp. “3-“6. idem, .
Esseys in Logical Semantics, Amsterdam 1985 0. l e's t a rs t l hl o
Some Remarka on. Quantitia:s.., Gﬁtaborg 1982. v
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This condition is closely related tc Mostowski's and Lindstrdm's
condition of invariance.

It is also possible to formulate another condition satisfied
only by special groups of qdantitiera; The monotonicity
conditions of quantifiers are fundamental in defining the class of
tirst-order quantifiers of type <1, 1> For
quantifiers that satisfy .CONSERV. and QUANT. there exists possi-
bility to introduce number-teoretical répresentation“. that ena-
bles to examin their relational properties. '. '

Logic of induction is another domain of application of genera-
~lized quantifiers. A quantifier as a ‘“relation on relations" is
very useful to express various correlations searched by empiri-
cal sciencies. Let us look'nt Aristotla's scheme of induction:

5, is P
S2 13 P
Syl R

————— P
’ 3 b

S a P (every S‘is P).

(11 other scheiea ot,induction have the same form but as othér'
quantifiers are used it is possible to express .various ‘c o.r-
relations of interest. % ~ 5 iy

The practical utility of . generalizad induction was’ passible
thanks to computers. The _group of Czech scientists. have invented
apacxnl computer methods of’ obtaining induction hypothesia called
GUHA methods - General Unary - Nypothesis Autonatonls The GUHA
methods are Baspd‘on"nuuber theqrettc‘ representation_ of benerp-
lized quantifiers. Whith support of as sociated func-
tions of quantifiers it is possible for a computer to search
interesting correlations in empirical data. Very important sort
of ganepilizeq,qudntiliets used in ' GUHA methods are s t a t i s-
tical quantifier s..ilhalr- ~associated functions ex-

l"Seeéx A, Most o ws K i op. cxt

15.5ee: P. W4 ek, T. Havrédnelk, Mechanizing Hy-f
pcthesxs Fotnatlon Springer Verlag, Nsidelberg 1917 o :
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press well known statistical tests, Statistical quantifiers were
applicated in sociology. medicine, linguistics and even industry.
The given examples prove that modern notion of a quantifier
due to Lindstrim is a very important issue of same branches of
contemporary logic. ) i

University of Léd#
Paland
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0 ROZNYCH POJECIACH KWANTYFIKATORA

Jednym z podstawowych poje¢ logiki jest pojecie kwantyfikacji i
zwigzane z nim pojgcie kwantyfikatora. Pierwsze problemy 2wigzane
z kwantyfikacjg pojawily si wraz z powstaniem sylogistyki Arysto-
telesa, chociaz nie istnialo wéwczas pojgcie kwantyfikatora. Po-
wstanie rachunku predykatéw I rzgdu oraz wprowadzenie klasycznych
k;:ntytikatord V i 3 zmienilo zupelnie sens pojgcia kwantyfika-
ci)i; ; ; ; ]

Prace Mostowskiego i Lindstréma podwigcone kwantyfikatorom u-
ogélnionym wprowadzily zupelnie nowe rozumienie kwantyfikacji, kté-
re zaowocowato wieloma praktycznymi zastosowaniami w lingwistyce
logicznej i 1ogice indukecji. \ ' '

Gidwnym celem pracy jest wykazanie, 2e koncepcja kwantyfikato-
réw uogélnionych Lindstrima nawigzuje bezeoérednio' do  intuicji
Ar{totelesa. zad spdiki "a", "e", "i", “o" wystgpujgce w jgzyku
sylogistyki mogq byé uznane za symbole kwantyfikatoréw uogélnio-
nych typu <1, L>. ; j _ :



