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THE INFLUENCE OF THE ZEBRA MUSSEL (DREISENA POLYMORHPA) 

ON MAGNESIUM AND CALCIUM CONCENTRATION IN WATER 

 

 

Abstract: In this study we examined changes in magnesium and calcium ion 

concentrations depending on Zebra Mussel biomass, pH values and temperature. We 

performed field experiments in years with different weather conditions using twelve 

200 litre polycarbonate containers filled with 150 litres of non-filtered water from 

lowland, eutrophic reservoirs. Three treatments of the experiment were represented 

by: Phyto control with non-filtered water, Phyto+Dreis A with Zebra Mussel 

biomass of 500 g/m2, and Phyto+Dreis B with Zebra Mussel biomass of 1.000 g/m2. 

Magnesium and calcium ions concentrations were analyzed on an ion 

chromatograph (Dionex-1000). Results indicated a significant reduction in 

magnesium and calcium ion concentrations by Zebra Mussels (independent of 

mussel biomass), especially in the year with higher and more stable average 

temperatures. Mg concentration was significantly negatively correlated with 

temperature in this year. In both years of study the magnesium and calcium ion 

concentrations were negatively correlated with pH. Analyses of the Zebra Mussel’s 

impact on magnesium and calcium loss from water, linked with the influence of 

physical factors (temperature and pH), may be valuable for the management of 

invaded ecosystems. 
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1. INTRODUCTION 

The invasive Zebra Mussel species Dreissena polymorpha Pallas is known as 

an organism that tolerates a wide range of environmental conditions, which results 

in its high dispersal capacity (STAŃCZYKOWSKA 1983; O’NEILL 1996; 

LEWANDOWSKI 2001; CASAGRANDI et al.  2007). It has, in fact, invaded numerous 

European and North American inland waters (STRAYER 1991), usually causing 

dramatic changes in the physical and biological structure of the infested ecosystems 

(MACISAAC 1996; KARATAYEV et al. 2002). However, as the Zebra Mussel 

originates from the Caspian and Black Seas, colonization of the freshwater 

environments requires many physiological adaptations. Nevertheless, the water 

chemistry demands of the Zebra Mussel are extraordinarily complex and not 

observed in other freshwater bivalves (HOROHOV et al. 1992). Their tolerance to 

decreased Na, Cl, K, and particularly Mg concentrations in water is very low (DIETZ 

et al. 1994), and studies show that the Zebra Mussel is absent in Mg-poor lakes 

(HALLSTAN et al. 2010). RAMCHARAN and co-workers (1992) additionally classified 

calcium concentration and water pH as the important factors for the success of Zebra 

Mussel invasion. Identification of these factors may be crucial for limiting and 

controlling Zebra Mussel distribution. However, the determination of D. 

polymorpha’s influence on the concentration of ions essential for this species’ 

survival may be also valuable for the management of the invaded water bodies. 

Effective control programs should focus not only on local Zebra Mussel population 

dynamics but also on the exploration of complex physical, chemical and biological 

changes impacted by Zebra Mussel activity in monitored ecosystems (O’NEILL 

1996; KARATAYEV et al. 2002). 

We performed outdoor experiments in years with different weather 

conditions: in 2007 summer temperature was generally low and fluctuating, but in 

2008 summer was warm with relatively stable temperatures. In this study we 

examined how the presence of the Zebra Mussel contributed to changes in 

magnesium and calcium ion concentrations in water and whether these changes were 

correlated with water temperature and pH. Research was conducted into the aspect 
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of water quality, because we were interested whether, and to what extent, Zebra 

Mussels may be Mg-competitors for bloom-forming algae and cyanobacteria.  

 

2. MATERIALS AND METHODS 

 The experiment was conducted from 23 June to 13 September 2007 and 22 

June to 18 September 2008 in the Field Station of the University of Łodź located 

near Sulejów Reservoir. Water and Zebra Mussels used in the experiment were 

collected from the Sulejów Reservoir (51o22’-51o28’N, 19o51’-20o01’E) situated on 

138.9 km of the Pilica River (the Vistula River catchment) in central Poland. The 

Sulejów Reservoir is a 37-year old, shallow (mean depth is 3.3 m) and eutrophic 

ecosystem, invaded by Zebra Mussel (ABRASZEWSKA 2006). During summer, the 

cyanobacteria blooms forming mainly by Microcystis aeruginosa (Kutzing) are 

usually observed (TARCZYŃSKA et al. 2001).  

Zebra Mussels were collected in the shallow littoral part of the reservoir. In 

the laboratory, colonies were cleaned, weighed and placed in aquaria with reservoir 

water for acclimatization. After 24 h, Zebra Mussels were used in the experiment. 

Filtering activity of animals was monitored every day. All Zebra Mussels were again 

weighed and released back to the reservoir after the end of the experiment.  

The experiment was conducted under natural light and temperature 

conditions in twelve 200 l polycarbonate containers (115 cm height, 60 cm 

diameter) filled with 150 l of non-filtered water from Sulejów Reservoir. There were 

three treatments prepared of the experiment (in four replicates):   

- Phyto (control with non-filtered water from the reservoir); 

- Phyto+Dreis A (non-filtered water + 175 g of Zebra Mussel colonies, which 

corresponds to a biomass of 500 g/m ); 2

- Phyto+Dreis B (non-filtered water + 350 g of Zebra Mussel colonies, which 

corresponds to a biomass of 1.000 g/m2). 

The containers were put into a concrete ditch filled with water to 2/3 the height of 

the containers to buffer temperature fluctuations. Before each sampling occasion, 

water in all containers was mixed. 
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2.1. Physical water analyses 

Water temperature (oC), pH and total dissolved oxygen - TDO (mg/l) were 

measured weekly in each container at 10:00 a.m. using WTW 340i/SET 

multisensors.  

 

2.2. Magnesium and calcium ion concentrations 

Magnesium (Mg) and calcium (Ca) ion concentrations were analysed on 

Dionex-1000, which consists of two ion chromatographies IC, separated for anions 

and cations. Each IC (Dionex Corporation, ICS-1000) consists of a pump, eluent, 

guard column (CG18 for cation and AG18 for anions), an analytical column (IonPac 

CS18 for cation, IonPac AS18 for anions), and an electrolytic suppressor (CSRS-

ULTRA II cation electrolytic suppressor and ASRS – ULTRA II anion electrolytic 

suppressor) to stabilize the baseline. The analyses were performed by using 16 mM 

methanesulfonic acid (Fluka) for the cation analysis and a mixture of 4.5 mM 

sodium carbonate and 1.4 mM sodium bicarbonate for the anion system prepared 

from the AS22 Eluent Concentrate (produced by Dionex Corporation). Both ICs 

were operated in isocratic elution in 30 ºC at a flow rate of 1ml/min. Cation 

measurements were performed using a 25 µl injection loop and anion using a 450 µl 

injection loop. For ion identification, combined standards (Seven Anion Standard II, 

Dionex Six Cation Standard produced by Dionex Corporation) were used. 

 

2.3. Concentration of chlorophyll a 

For each treatment, the concentration of chlorophyll a (Chl a) (µg/l) was 

measured immediately after sampling in a 1-liter water sample using a bbe Algae 

Online Analyser (AOA, Version 1.5 E1, bbe-Moldaenke company Kiel, Germany). 

The measurement principle of bbe AOA is based on the determination of the 

fluorescence spectrum and fluorescence kinetics of the algae (www.bbe-

moldaenke.de). This online analyser is recognised as reliable for chlorophyll a 

measurement (CAGNARD et al. 2006) and is a useful tool for monitoring 

phytoplankton community composition, especially as an early warning system for 
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the detection of harmful algal blooms (IZYDORCZYK et al. 2009; RICHARDSON et al. 

2010). 

 

2.4. Statistical methods 

Testing for the treatment effect on the magnesium ion concentration in water, 

in order to adjust for the effects of both magnesium uptake by algae and pH 

variability, we applied an analysis of covariance (ANCOVA) with treatments as 

categorical factors, magnesium concentrations as the dependent factors, and 

chlorophyll a concentrations and pH values as covariate. To test for the treatment 

effect on both the oxygen and calcium ion concentrations we used an ANOVA with 

treatments as categorical factors and calcium and oxygen concentrations as 

dependent factors. Pearson's correlation coefficient was applied for analysing 

relationships between magnesium and calcium ions concentrations and pH and 

temperature.  

 

3. RESULTS 

3.1. Zebra Mussel analyses 

We observed permanent filtering activity of Zebra Mussels in all days of the 

experiment. In both study years, the entire Zebra Mussel weight increased during the 

experiment (Fig. 1): in 2007 - from 175 to mean 191.21 g (SD=5.48) in the 

Phyto+Dreis A, and from 350 to mean 367.41 g (SD=4.67) in the Phyto+Dreis B 

treatment; in 2008 - from 175 to mean 196.73 g (SD=3.34) in the Phyto+Dreis A, 

and from 350 to mean 381.6 g (SD=5.87) in the Phyto+Dreis B treatment. 

 

3.2. Physical water analyses 

We did not find any significant differences in water temperature and oxygen 

concentration between the three types of treatments neither in 2007 nor 2008. In 

2007 mean temperature was 14.9oC (Fig. 2a), ranging from 11.9oC to 19.7oC. Thus, 

despite the buffering role of water in the concrete ditch, temperature fluctuations 

were high. These fluctuations were due to variable weather conditions.  In 2008, 

mean temperature was much higher at 18.3oC and fluctuated from 17.5oC  
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to 22.9oC between 22 June and 4 September before decreasing to 9.5oC in all 

treatments during the last two weeks of the experiment (Fig. 2b). 
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Fig. 1. Weight of Zebra Mussels (g) at start and end of the experiment. White bars –

Phyto+Dreis A; grey bars – Phyto+Dreis B treatment. Bars represent means of three 

replicates ±SD.  

 

In 2007 total dissolved oxygen concentration varied from 9.24 to 10.54 mg/l 

in July, from 8.02 to 10.83 mg/l in August and from 8.12 to 10.88 mg/l in 

September. In 2008 the mean values of total dissolved oxygen concentration were 

higher than in the previous year and fluctuated from 8.90 to 11.70 mg/l in July, from 

10.34 to 13.76 mg/l in August and from 9.30 to 14.39 mg/l in September. 

In 2007 pH values varied in all treatments (Fig. 3a) in the range of 8.53-9.39 

in Phyto and 8.53-9.6 in mussel-containing treatments, but the differences were not 

statistically significant (ANOVA F2,9=0.91; P=0.44). However, in 2008 pH differed 

significantly between treatments (ANOVA F2,9=102.72; P<0.001).  

The lowest pH was observed in Phyto (8.97-8.30 and the last value 7.47). In 

Zebra Mussel treatments pH values fluctuated similarly (8.64-9.20)  during  the  first  
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Fig. 2. Water temperature (oC) in: a) year 2007, and b) year 2008. Grey triangles – 

Phyto; white squares – Phyto+Dreis A; black circles – Phyto+Dreis B. Points 

represent means of three replicates ±SD. 
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Fig. 3. Water pH in: a) year 2007, and b) year 2008. Grey triangles – Phyto; white 

squares – Phyto+Dreis A; black circles – Phyto+Dreis B. Points represent means of 

three replicates ±SD. 
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half of the experiment. From 14 August pH significantly increased in Phyto+Dreis 

B, achieving a maximal value of 9.70 (Fig. 3b). In the last week of the experiment 

pH decreased rapidly in all treatments, which was probably connected with the 

slowdown of the biological processes due to considerable fall in temperature. Direct 

effect of temperature on pH was not observed in this study. 

 

3.3. Concentration of magnesium and calcium ions 

The values of both magnesium and calcium ion concentrations were 

substantially lower in 2007 than in 2008. Analysis of covariance showed a 

significant influence of chlorophyll a concentrations on magnesium concentrations 

in 2007 but not in 2008 (ANCOVA: F1,34=6.78; P=0.014 and F1,34=0.202; P=0.656, 

respectively), yet magnesium concentrations differed significantly between 

treatments in both 2007 (ANCOVA F2,34=9.54; P<0.001) and 2008 (ANCOVA 

F2,34=4.71; P=0.016), showing the dominant role of the Zebra Mussel in reducing the 

quantity of these ions. In both cases, the values were higher in Phyto than in the 

Zebra Mussel treatments (Fig. 4a,b). In 2007, Mg concentration in Phyto ranged 

0.52-0.62 mg/l. In mussel treatments magnesium concentration fluctuated similarly 

until the beginning of August, achieving the minimal values of 0.36 and maximal of 

0.51 mg/l. In the Phyto+Dreis B treatment, the concentration of Mg ion rapidly 

decreased to 0.19 mg/l (Fig. 4a). In 2008, differences of Mg ion concentration 

between treatments appeared earlier and were clearer than in 2007. During the first 

week of the experiment, values of magnesium concentration suddenly decreased in 

all treatments. Then, they stabilised in the range 0.87-1.10 mg/l. In mussel 

treatments Mg concentrations started to decrease significantly from 17 July and 

fluctuated in the range 0.75-0.46 mg/l in Phyto+Dreis A and 0.41-0.18 mg/l in 

Phyto+Dreis B (Fig. 4b).  

Calcium ion concentrations, analogically to magnesium, differed 

significantly between control (Phyto) and mussel treatments both in 2007 (ANOVA 

F2,9=24.74; P<0.001) and in 2008 (ANOVA F2,9=56.19; P<0.001).  
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Fig. 4. The concentrations of magnesium ion (mg/l) in three treatments of the 

experiment in: a) year 2007, and b) year 2008. Grey triangles – Phyto; white squares 

– Phyto+Dreis A; black circles – Phyto+Dreis B. Points represent means of three 

replicates ±SD. 
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Fig. 5. The concentrations of calcium ion (mg/l) in three treatments of the 

experiment in: a) year 2007, and b) year 2008. Grey triangles – Phyto; white squares 

– Phyto+Dreis A; black circles – Phyto+Dreis B. Points represent means of three 

replicates ±SD. 
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However, the differences in Ca concentration between treatments seemed to 

be less visible in 2007; they ranged from 18.9-15.05 mg/l in Phyto, 18.9-11.77 mg/l 

in Phyto+Dreis A, and 18.9-12.55 mg/l in Phyto+Dreis B (Fig. 5a). In 2008, we 

observed the decreasing tendency in Ca ion concentration in all treatments, but it 

was the most pronounced in mussel treatments (Fig. 5b). In the control, the calcium 

concentration fluctuated from 36.67 to 23.65 mg/l. From 24 July, Ca concentration 

stabilised both in Phyto+Dreiss A and Phyto+Dreiss B treatments in the ranges 

20.71-17.6 and 19.91-15.07 mg/l respectively.  

 

3.4. Physical-chemical correlations  

Values of Pearson's correlation coefficient indicated a significant positive 

relationship between magnesium and calcium ion concentrations in both 2007 

(r=0.632; P<0.001) and 2008 (r=0.889; P<0.001). In 2007 magnesium and calcium 

concentrations were negatively correlated with pH (r=-0.33; P=0.040 and r=-0.582; 

P<0.001, respectively). We did not find significant correlations of either Mg or Ca 

with temperature in this year. 

In 2008 negative correlations of both magnesium (r=-0.392; P=0.014) and 

calcium concentration (r=-0.348; P=0.030) with pH were also observed. Magnesium 

ion concentrations in mussel treatments were positively correlated with temperature 

(r=0.45; P=0.023), whereas we did not find such a correlation in the control 

(r=0.157; P=0.610). There was also no correlation between calcium and temperature. 

 

3.5. Concentration of chlorophyll a  

At the start of the experiment, chlorophyll a concentration amounted to 22.91 

µg/l in 2007 and 44.26 µg/l in 2008. Despite such differences, the changes of Chl a 

dynamics were similar in both study years (Fig. 6a,b). During the first month of the 

study, Chl a concentrations decreased in all treatments. Subsequently, in Zebra 

Mussel treatments, the biomass of algae started to increase and achieved maximal 

concentrations of chlorophyll a in the beginning of September 2007 as well as in 

2008 (in Phyto+Dreis B: 78.10 and 76.50 µg/l in 2007 and 2008, respectively).  
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Fig. 6. The chlorophyll a concentrations (µg/l) in three treatments of the experiment 

in: a) year 2007, and b) year 2008. Grey triangles – Phyto; white squares – 

Phyto+Dreis A; black circles – Phyto+Dreis B. Points represent means of three 

replicates ±SD. 
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In the control, Chl a concentration was low until the end of the study in both years 

(15.10 µg/l in 2007 and 2.68 µg/l in 2008; Fig. 6a,b). These differences between 

lower Chl a concentrations in the control and higher Chl a concentrations in both 

Zebra Mussel treatments were significant (ANOVA F2,36=3,93; P<0.029 and 

F2,36=7,42; P<0.002 in 2007 and 2008, respectively). 

 

4. DISCUSSION 

4.1. Magnesium and calcium roles and dynamics 

Magnesium is one of the fundamental cations of the mineral complex in all 

animal and plant tissues, insuring the correct course of catabolic and anabolic 

processes (PLESHCHITSER 1955). It has an unusual importance for Zebra Mussels, as 

many studies have shown that this species cannot survive in Mg-deficient water 

(DIETZ et al. 1994). Elevated Mg/Ca molar ratios in the surrounding water favour the 

precipitation of aragonite CaCO3-deposits over calcite, which indicates the crucial, 

regulatory role of magnesium in Zebra Mussel shell production (CHECA et al. 2007; 

HALLSTAN et al. 2010). DIETZ and co-workers (1994) have also indicated the 

exceptional importance of magnesium in Zebra Mussel osmoregulation. The 

sensitivity of Zebra Mussels to Mg deficits in water is probably an effect of the 

limited ability of the organism to reduce its rate of magnesium loss, which results 

from a high passive permeability to Mg by mantle or gill epithelia and substantial 

urinary loss of Mg (DIETZ et al. 1994). Severe decreases in the amount of 

magnesium ions in Zebra Mussel hemolymph and tissues are especially pronounced 

during stress (MARTEM’YANOV 2000). Considering, the fact that the Mg/Ca molar 

ratio in lakes is from 7 to even 43 times lower than in oceans, magnesium becomes a 

limiting factor in the physiology and shell production of Zebra Mussels in 

freshwater ecosystems (HALLSTAN et al. 2010). Immense demands of Zebra Mussels 

for magnesium are shown in our study. The presented results, especially from the 

year 2008, indicated a significant influence of Zebra Mussels on magnesium ion 

concentrations in water (Fig. 4). Analyzing Mg concentration changes in 2008 (Fig. 

4b), it seems that the impact of mussels was abundance-dependent, as Mg loss was 

proportional to Zebra Mussel biomass. However, these differences were not 
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statistically significant. Furthermore, in both study years, concentrations of 

magnesium held to the same level of 0.2 mg/l in Phyto+Dreis B treatments during 

the last 4-5 weeks of the experiment (Fig. 4), despite the different physical 

conditions.  

In 2008 changes of Mg concentrations in water were correlated with 

temperature, but only in Zebra Mussel treatments (not in control), which may show 

that physiological processes of mussels connected with uptake or/and loss of Mg are 

reliant on temperature. In 2007, we observed similar tendencies, but they were not 

significant, probably because much lower mean temperature (Fig. 2a) decreased the 

biological activity of the Zebra Mussels. Due to this effect, the influence of D. 

polymorpha on changes in Mg concentration in this year was not as clear as it was in 

2008. 

In our study both magnesium and calcium ion concentrations were negatively 

correlated with pH, which was reflected in the observed trends; concentration of Mg 

and Ca decreased and pH values increased during the experiment (Fig. 3, 4, 5). In 

both Zebra Mussel treatments, pH increased during the daytime due to the intensive 

uptake of carbon dioxide by algae during photosynthesis (Fig. 6). The range of pH 

influences the physiological ion balance of Zebra Mussels. VINOGRADOV and co-

workers (1993) indicated that loss of calcium to the external environment 

significantly increases at pH values below 7.0. This process may result in Zebra 

Mussel mortality. Conversely, the increase of pH simultaneously causes an 

increased influx of calcium to the Zebra Mussel’s body (VINOGRADOV et al. 1993), a 

finding that may elucidate our results. In 2008, in mussel treatments, pH exceeded 

the value of 9.6, probably because of the high rate of CO2 uptake by intensively 

photosynthesising green algae. However, despite such a pH value being recognised 

as the upper tolerance limit of Zebra Mussels, (BOWMAN, BAILEY 1998) we 

observed permanent filtering activity of Zebra Mussels with no signs of mortality. 

Increase of Zebra Mussel weight on the end of the study in both years (Fig. 1) 

confirms that animals stayed alive and physiological active in the experiment 

duration. 
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The abundance of calcium is reported by some authors (e.g. RAMCHARAN 

1992) to be the main predictor for the occurrence of Zebra Mussels, which reflects 

its importance for the mussel’s viability. Calcium is involved in muscular 

contractions, cellular cohesion, nervous functions and the maintenance of pH 

(CHÉTAIL, KRAMPITZ 1982), and of course, it is indispensable to shell growth in the 

form of calcium carbonate (PIECHOCKI, DYDUCH-FALNIOWSKA 1993). In our 

experiment, calcium loss was significantly larger in mussel treatments than in the 

controls, but this effect was not as clear as it was for magnesium (Fig. 4, 5). Results 

were again more obvious in 2008 than in 2007; in mussel treatments calcium 

concentrations decreased from 39.87 to mean 19 mg/l and oscillated around this 

level to the end of study (Fig. 5b). Zebra Mussels require Ca ion concentrations 

greater than 12 mg/l to establish a significant population, which is considerably 

higher than what is required by other bivalve molluscs (typically 3-4 mg/l) (HEATH 

1993). The upper Ca limit is not unambiguously known, e.g. O’NEILL (1996) 

indicates a high colonisation potential of Zebra Mussels over a calcium range from 

25 to even >125 mg/l. Even though Zebra Mussels are normally found in water with 

moderate to high calcium concentrations, they will survive in Ca-poor environments, 

providing the bathing fluid contains magnesium in minimal amounts (DIETZ et al. 

1994). Moreover, mussels survive Ca-deficiency by mobilising calcium from their 

shells in order to maintain necessary levels of calcium in hemolymph (DIETZ et al. 

1994). This fact shows that calcium is not a limiting factor in the Zebra Mussel’s 

biology, as is magnesium.  

 

4.2. Reduction of the excessive magnesium input to freshwater ecosystems  

The important sources of magnesium in freshwater ecosystems are fertilizers 

used in agriculture and organic pollutants from farms, such as animal faeces and 

herbal food residue (SAPEK 2007). Magnesium from these sources gets to the lakes, 

reservoirs and rivers through ground water or/and surface flow from farming 

regions. Although, magnesium is not considered a pollutant, reduction of excessive 

Mg input to water bodies may be important for water quality, because magnesium, a 

main component of chlorophyll, has a stimulating effect on algal and cyanobacterial 
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growth (e.g. TUBEA et al. 1981; UTKILEN 1982). However, magnesium may be only 

one of the factors contributing to algal blooms – the most important seem to be 

nitrogen and phosphorus, both of which amplify the symptoms of eutrophication. In 

our experiments the highest values of chlorophyll a were observed in treatments 

with Zebra Mussels (Fig. 6), where, due to a mollusc biological activity, Mg 

concentration was low but nutrient loads excreted by Zebra Mussels (P and N) were 

high (results in WOJTAL-FRANKIEWICZ, FRANKIEWICZ 2010) - what indicate that 

Zebra Mussel may increase water trophy. In order to avoid such a negative effect of 

Zebra Mussels on water quality in natural ecosystems, strong control of their 

population size is necessary (WOLNOMIEJSKI, WOŹNICZKA 2008; WIŚNIEWSKI, 

personal communication). This control may contribute to decrease of an internal 

input of nutrients and N:P ratio in water (WOJTAL-FRANKIEWICZ, FRANKIEWICZ 

2010). For restoring and controlling nutrient input from the catchment area (external 

input) a complex strategy should be used, according to the interdisciplinary concept 

for sustainable water resources management (ZALEWSKI 2000). Reduction of 

magnesium and phosphorus loads is possible by the optimization of agricultural 

practices and creation of ecotone buffers, where nutrients are transformed into plant 

biomass. It is especially necessary in the case of improper agricultural management, 

e.g. monocultural production of crop and livestock, which often destroys the process 

of residue recycling (PETERSEN 2001). In such cases, the construction or 

preservation of wetlands at the shore line is crucial for protection against pollutants 

that inevitably flow from the environment. Moreover, ecotones serve as a productive 

habitat for species present in adjacent ecosystems, increasing biodiversity and 

thereby the resistance and resilience of water ecosystems against human impact 

(SANTIAGO-FANDINO, NEATE 2002). However, this strategy so effective for 

pollution reduction may be not quite useful for D. polymorpha control. This is 

because submerged macrophytes are the important substrate for settling of Zebra 

Mussel’s planktonic larvae (veligers) and their availability is one of the main factors 

responsible for raising the abundance of Zebra Mussel population (KOBAK, 

WIŚNIEWSKI 1998). 
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In conclusion, Zebra Mussels are able to considerably influence the pool of 

available magnesium in water of inhabited ecosystems. As the presented results 

indicate, Zebra Mussels have a higher rate of magnesium uptake than do 

phytoplankton, and they seem to be important Mg competitors for algae and 

cyanobacteria. Translocation of magnesium in Zebra Mussel tissues and shells may 

significantly reduce amount of Mg accessible for phytoplankton. On the other hand, 

during times of high phytoplankton abundance, intensive photosynthesis causes an 

increase of pH, which reduces the level of soluble magnesium in water (ROGER, 

KULASOORIYA 1980) and may limit the availability of Mg for Zebra Mussels. 

Perhaps, limitation of magnesium inflow to freshwater ecosystems may contribute to 

the reduction of Zebra Mussel expansion, but this process depends on many factors 

and requires detailed research. We believe that knowledge about impact of Zebra 

Mussels on magnesium dynamics may be useful for studies focused on methods of 

controlling not only this invasive species, but also algal blooms. 
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