Show simple item record

dc.contributor.authorPodsędkowska, Hanna
dc.date.accessioned2015-06-23T10:51:47Z
dc.date.available2015-06-23T10:51:47Z
dc.date.issued2015-03-12
dc.identifier.issn1099-4300
dc.identifier.urihttp://hdl.handle.net/11089/10061
dc.description.abstractA notion of entropy of a normal state on a finite von Neumann algebra in Segal’s sense is considered, and its superadditivity is proven together with a necessary and sufficient condition for its additivity. Bounds on the entropy of the state after measurement are obtained, and it is shown that a weakly repeatable measurement gives minimal entropy and that a minimal state entropy measurement satisfying some natural additional conditions is repeatable.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesEntropy;2015, 17
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectentropypl_PL
dc.subjectvon Neumann algebrapl_PL
dc.subjectinstrumentpl_PL
dc.titleEntropy of Quantum Measurementpl_PL
dc.typeArticlepl_PL
dc.page.number1181-1196pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Faculty of Mathematics and Computer Sciencespl_PL
dc.referencesVon Neumann, J. Mathematische Grundlagen der Quantenmechanik (Mathematical Foundations of Quantum Mechanics); Springer: Berlin, Germany, 1932; Princeton University Press: Princeton, NJ, USA, 1955.pl_PL
dc.referencesBratteli, O.; Robinson, D.W. Operator Algebras and Quantum Statistical Mechanics; Springer: Berllin, Germany and New York, NY, USA, 1979; Volume I.pl_PL
dc.referencesEmch, G.G. Algebraic Methods in Statistical Mechanics and Quantum Field Theory; Wiley-Interscience: New York, NY, USA, 1972.pl_PL
dc.referencesHaag, R. Local Quantum Physics. Fields, Particles, Algebras; Springer: Berlin, Germany and New York, NY, USA, 1992.pl_PL
dc.referencesHaag, R.; Kastler, D. An algebraic approach to quantum field theory. J. Math. Phys. 1964, 5, 848–861.pl_PL
dc.referencesSegal, I.E. Postulates for general quantum mechanics. Ann. Math. 1947, 48, 930–948.pl_PL
dc.referencesNeshveyev, S.; Størmer, E. Dynamical Entropy in Operator Algebras; Springer: Berlin, Germany and New York, NY, USA, 2006.pl_PL
dc.referencesPetz, D.; Ohya, M. Quantum Entropy and Its Use; Springer: Berlin, Germany and New York, NY, USA, 2004.pl_PL
dc.referencesOhya, M.; Watanabe, N. Quantum entropy and its applications to quantum communication and statistical physics. Entropy 2010, 12, 1194–1245.pl_PL
dc.referencesRørdam, M.; Størmer, E. Classification of nuclear C*-Algebras. Entropy in operator algebras. In Encyclopaedia of Mathematical Sciences; Springer: Berlin, Germany and New York, NY, USA, 2002.pl_PL
dc.referencesDavies, E.B. Quantum Theory of Open Systems; Academic Press: London, UK and New York, NY, San Francisco, CA, USA, 1976.pl_PL
dc.referencesDavies, E.B.; Lewis, J.T. An operational approach to quantum probability. Comm. Math. Phys. 1970, 18, 239–260.pl_PL
dc.referencesSegal, I.E. A note on the concept of entropy. J. Math. Mech. 1960, 9, 623–629.pl_PL
dc.referencesUmegaki, H. Conditional expectation in an operator algebra, IV (Entropy and information). K¯odai Math. Sem. Rep. 1962, 14, 59–85.pl_PL
dc.referencesBusch, P.; Lathi, P.J.; Mittelstaedt, P. The Quantum Theory of Measurement; Lecture Notes in Physics Monographs Volume 2; Springer: Berlin, Germany; New York, NY, USA, 1991.pl_PL
dc.referencesŁuczak, A.; Podsędkowska, H. Lüders instruments, generalized Lüders theorem, and some aspects of sufficiency. Int. J. Theor. Phys. 2015, doi:10.1007/s10773-014-2485-y.pl_PL
dc.referencesŁuczak, A. Characterization of von Neumann instruments in a theory of quantum measurement. In Proceedings of the 26th Symposium on Mathematical Physics, Toru´n, Poland, 7–10 December 1993; pp. 23–30.pl_PL
dc.referencesLüders, G. Über die Zustandsänderung durch den Messprozess. Ann. Phys. 1951, 8, 322–328.pl_PL
dc.referencesArias, A.; Gheondea, A.; Gudder, S. Fixed points of quantum operations. J. Math. Phys. 2002, 43, 5872–5881.pl_PL
dc.referencesBusch, P.; Singh, J. Lüders theorem for unsharp quantum measurements. Phys. Lett. A 1998, 249, 10–12.pl_PL
dc.referencesLiu, W.; Wunde, J. Fixed points of commutative Lüders operations. J. Phys. A Math. Theor. 2010, 43, doi:10.1088/1751-8113/43/39/395206.pl_PL
dc.referencesŁuczak, A. On ideal measurements and their corresponding instruments on von Neumann algebras. Open Syst. Inf. Dyn. 1999, 6, 325–334.pl_PL
dc.contributor.authorEmailhpodsedk@math.uni.lodz.plpl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska