Pokaż uproszczony rekord

dc.contributor.authorPodsędkowska, Hanna
dc.date.accessioned2015-06-23T10:51:47Z
dc.date.available2015-06-23T10:51:47Z
dc.date.issued2015-03-12
dc.identifier.issn1099-4300
dc.identifier.urihttp://hdl.handle.net/11089/10061
dc.description.abstractA notion of entropy of a normal state on a finite von Neumann algebra in Segal’s sense is considered, and its superadditivity is proven together with a necessary and sufficient condition for its additivity. Bounds on the entropy of the state after measurement are obtained, and it is shown that a weakly repeatable measurement gives minimal entropy and that a minimal state entropy measurement satisfying some natural additional conditions is repeatable.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesEntropy;2015, 17
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectentropypl_PL
dc.subjectvon Neumann algebrapl_PL
dc.subjectinstrumentpl_PL
dc.titleEntropy of Quantum Measurementpl_PL
dc.typeArticlepl_PL
dc.page.number1181-1196pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Faculty of Mathematics and Computer Sciencespl_PL
dc.referencesVon Neumann, J. Mathematische Grundlagen der Quantenmechanik (Mathematical Foundations of Quantum Mechanics); Springer: Berlin, Germany, 1932; Princeton University Press: Princeton, NJ, USA, 1955.pl_PL
dc.referencesBratteli, O.; Robinson, D.W. Operator Algebras and Quantum Statistical Mechanics; Springer: Berllin, Germany and New York, NY, USA, 1979; Volume I.pl_PL
dc.referencesEmch, G.G. Algebraic Methods in Statistical Mechanics and Quantum Field Theory; Wiley-Interscience: New York, NY, USA, 1972.pl_PL
dc.referencesHaag, R. Local Quantum Physics. Fields, Particles, Algebras; Springer: Berlin, Germany and New York, NY, USA, 1992.pl_PL
dc.referencesHaag, R.; Kastler, D. An algebraic approach to quantum field theory. J. Math. Phys. 1964, 5, 848–861.pl_PL
dc.referencesSegal, I.E. Postulates for general quantum mechanics. Ann. Math. 1947, 48, 930–948.pl_PL
dc.referencesNeshveyev, S.; Størmer, E. Dynamical Entropy in Operator Algebras; Springer: Berlin, Germany and New York, NY, USA, 2006.pl_PL
dc.referencesPetz, D.; Ohya, M. Quantum Entropy and Its Use; Springer: Berlin, Germany and New York, NY, USA, 2004.pl_PL
dc.referencesOhya, M.; Watanabe, N. Quantum entropy and its applications to quantum communication and statistical physics. Entropy 2010, 12, 1194–1245.pl_PL
dc.referencesRørdam, M.; Størmer, E. Classification of nuclear C*-Algebras. Entropy in operator algebras. In Encyclopaedia of Mathematical Sciences; Springer: Berlin, Germany and New York, NY, USA, 2002.pl_PL
dc.referencesDavies, E.B. Quantum Theory of Open Systems; Academic Press: London, UK and New York, NY, San Francisco, CA, USA, 1976.pl_PL
dc.referencesDavies, E.B.; Lewis, J.T. An operational approach to quantum probability. Comm. Math. Phys. 1970, 18, 239–260.pl_PL
dc.referencesSegal, I.E. A note on the concept of entropy. J. Math. Mech. 1960, 9, 623–629.pl_PL
dc.referencesUmegaki, H. Conditional expectation in an operator algebra, IV (Entropy and information). K¯odai Math. Sem. Rep. 1962, 14, 59–85.pl_PL
dc.referencesBusch, P.; Lathi, P.J.; Mittelstaedt, P. The Quantum Theory of Measurement; Lecture Notes in Physics Monographs Volume 2; Springer: Berlin, Germany; New York, NY, USA, 1991.pl_PL
dc.referencesŁuczak, A.; Podsędkowska, H. Lüders instruments, generalized Lüders theorem, and some aspects of sufficiency. Int. J. Theor. Phys. 2015, doi:10.1007/s10773-014-2485-y.pl_PL
dc.referencesŁuczak, A. Characterization of von Neumann instruments in a theory of quantum measurement. In Proceedings of the 26th Symposium on Mathematical Physics, Toru´n, Poland, 7–10 December 1993; pp. 23–30.pl_PL
dc.referencesLüders, G. Über die Zustandsänderung durch den Messprozess. Ann. Phys. 1951, 8, 322–328.pl_PL
dc.referencesArias, A.; Gheondea, A.; Gudder, S. Fixed points of quantum operations. J. Math. Phys. 2002, 43, 5872–5881.pl_PL
dc.referencesBusch, P.; Singh, J. Lüders theorem for unsharp quantum measurements. Phys. Lett. A 1998, 249, 10–12.pl_PL
dc.referencesLiu, W.; Wunde, J. Fixed points of commutative Lüders operations. J. Phys. A Math. Theor. 2010, 43, doi:10.1088/1751-8113/43/39/395206.pl_PL
dc.referencesŁuczak, A. On ideal measurements and their corresponding instruments on von Neumann algebras. Open Syst. Inf. Dyn. 1999, 6, 325–334.pl_PL
dc.contributor.authorEmailhpodsedk@math.uni.lodz.plpl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska