dc.contributor.author | Jaczewski, Adam | |
dc.contributor.author | Brzoska, Barbara | |
dc.contributor.author | Wibig, Joanna | |
dc.date.accessioned | 2015-06-23T10:53:16Z | |
dc.date.available | 2015-06-23T10:53:16Z | |
dc.date.issued | 2015-03-13 | |
dc.identifier.issn | 1610-1227 | |
dc.identifier.uri | http://hdl.handle.net/11089/10062 | |
dc.description.abstract | The regional climate model RegCM3 is used to investigate potential future changes of temperature indices
in Poland for the period 2011–2030. The model is forced by ECHAM5/MPI-OM GCM data from World
Data Centre (WDCC) database for the 1971–1990 reference period and 2011–2030 projection period under
SRES B1, A1B and A2 emission scenarios. Model output statistics methods are used to transform simulated
minimum and maximum temperature data into realistic data. Selected indices of temperature extremes and
their differences between the scenario simulations and the reference were calculated, for all scenarios, for the
entire period and for each season. Results show a mean yearly increase in the number of summer and hot
days and a decrease in the number of frost and ice days. Highest decline in the number of frost and ice days
in autumn and an increase in spring is noticed. An highest increase in the number of summer and hot days
is seen in summer. Future projections of these indices are relevant for studies on climate change impact in
agriculture, tourism, health, transportation, road and building infrastructure. | pl_PL |
dc.description.sponsorship | This work was carried out as part of the project KLIMAT
"Impact of climate change on the society, the environment
and the economy (changes, effects and ways of
limiting them, conclusions for science and engineering
practice and economic planning)". No POIG.01.03.01-
14-011/08 in frames of the Operational Programme Innovative
Economy, co-financed by the European Regional
Development Fund. Authors thank anonymous
reviewers for valuable comments. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Gebrüder Borntraeger Science Publishers | pl_PL |
dc.relation.ispartofseries | Meteorologische Zeitschrift;Vol. 24, No. 1 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.subject | RegCM | pl_PL |
dc.subject | temperature indices | pl_PL |
dc.subject | climate modeling | pl_PL |
dc.subject | Poland | pl_PL |
dc.subject | SRES | pl_PL |
dc.title | Comparison of temperature indices for three IPCC SRES scenarios based on RegCM simulations for Poland in 2011–2030 period | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 99–106 | pl_PL |
dc.contributor.authorAffiliation | Jaczewski Adam, Institute of Meteorology and Water Management, Department of Climate Modelling and Seasonal Forecasting | pl_PL |
dc.contributor.authorAffiliation | Brzoska Barbara, University of Lodz, Faculty of Geographical Sciences, Department of Meteorology and Climatology | pl_PL |
dc.contributor.authorAffiliation | Wibig Joanna, Institute of Meteorology and Water Management, Department of Climate Modelling and Seasonal Forecasting | pl_PL |
dc.references | Arakawa, A., W.H. Schubert, 1974: Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. – J. Atmos. Sci. 31, 674–701. | pl_PL |
dc.references | Basu, R., 2009: High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. – Environ. Health 8, 40, PMID: 19758453. | pl_PL |
dc.references | Bordoy, R., P. Burlando, 2012: Bias Correction of Regional Climate Model Simulations in a Region of Complex Orography. – J. Appl. Meteor. Climatol. 52, 82–101. | pl_PL |
dc.references | Christensen, J.H., O.B. Christensen, 2007: A summary of the PRUDENCE model projections of changes in European climate by the end of this century. – Climatic Change 81, 7–30. | pl_PL |
dc.references | Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. – Global Planet. Change 57, 16–26. | pl_PL |
dc.references | Domonkos, P., J. Kyselý, K. Piotrowicz, P. Petrovic, T. Likso, 2003: Variability of extreme temperature events in south-central Europe during the 20th century and its relationship with large-scale circulation. – Int. J. Climatol. 23, 987–1010. | pl_PL |
dc.references | Elguindi, N., X. Bi, F. Giorgi, B. Nagarajan, J. Pal, F. Solmon, S. Rauscher, A. Zakey, 2007: Regional climatic model RegCM user manual version 3.1. – The Abdus Salam International Centre for Theoretical Physics Strada Costiera, Trieste. | pl_PL |
dc.references | Elguindi, N., S.A. Rauscher, F. Giorgi, 2013: Historical and future changes in maximum and minimum temperature records over Europe. – Climatic Change 117, 415–431. | pl_PL |
dc.references | Endler, C., A. Matzarakis, 2011: Analysis of high-resolution simulations for the Black Forest region from a point of view of tourism climatology – a comparison between two regional climate models (REMO and CLM). – Theo. Appl. Climatol. 1030, 427–440. | pl_PL |
dc.references | Giorgi, F., E. Coppola, 2010: Does the model regional bias affect the projected regional climate change? An analysis of global model projections. – Climatic Change 100, 787–795. | pl_PL |
dc.references | Giorgi, F., L.O. Mearns, 1999: Introduction to special section: Regional Climate Modeling Revisited. – J. Geophys. Res. Atmos. 104, 6335–6352. | pl_PL |
dc.references | Giorgi, F., X. Bi, J.S. Pal, 2004: Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). – Climate Dyn. 22, 733–756. | pl_PL |
dc.references | Grell, G.A., 1993: Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. – Mon. Wea. Rev. 121, 764–787. | pl_PL |
dc.references | Halenka, T., J. Kalvová, Z. Chládová, A. Demeterová, K. Zemánková, M. Belda, 2006: On the capability of RegCMto capture extremes in long term regional climate simulation – comparison with the observations for Czech Republic. – Theo. Appl. Climatol. 86, 125–145. | pl_PL |
dc.references | Inouye, D.W., 2008: EFFECTS OF CLIMATE CHANGE ON PHENOLOGY", FROST DAMAGE", AND FLORAL ABUNDANCE OFMONTANEWILDFLOWERS. – Ecology 89, 353–362. | pl_PL |
dc.references | Jacob, D., J. Petersen, B. Eggert, A. Alias, O.B. Christensen, L.M. Bouwer, A. Braun, A. Colette, M. Déqué, G. Georgievski, E. Georgopoulou, A. Gobiet, L. Menut, G. Nikulin, A. Haensler, N. Hempelmann, C. Jones, K. Keuler, S. Kovats, N. Kröner, S. Kotlarski, A. Kriegsmann, E. Martin, E. v. Meijgaard, C. Moseley, S. Pfeifer, S. Preuschmann, C. Radermacher, K. Radtke, D. Rechid, M. Rounsevell, P. Samuelsson, S. Somot, J.-F. Soussana, C. Teichmann, R. Valentini, R. Vautard, B.Weber, P. Yiou, 2014: EURO-CORDEX: new highresolution climate change projections for European impact research. – Reg. Environ. Change 14, 563–578. | pl_PL |
dc.references | Jones, P.D., T.J. Osborn, K.R. Briffa, C.K. Folland, E.B. Horton, L.V. Alexander, D.E. Parker, N.A. Rayner, 2001: Adjusting for sampling density in grid box land and ocean surface temperature time series. – J. Geophys. Res. Atmos. 106, 3371–3380. | pl_PL |
dc.references | Klein Tank, A.M.G., G.P. Können, 2003: Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–99. – J. Climate 16, 3665–3680. | pl_PL |
dc.references | Klein Tank, A.M.G., G.P. Können, F.M. Selten, 2005: Signals of anthropogenic influence on European warming as seen in the trend patterns of daily temperature variance. – Int. J. Climatol. 25, 1–16. | pl_PL |
dc.references | Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, G.A. Meehl, 2009: Challenges in Combining Projections from Multiple Climate Models. – J. Climate 23, 2739–2758. | pl_PL |
dc.references | Kreyling, J., D. Thiel, K. Simmnacher, E. Willner, A. Jentsch, C. Beierkuhnlein, 2012: Geographic origin and past climatic experience influence the response to late spring frost in four common grass species in central Europe. – Ecography 35, 268–275. | pl_PL |
dc.references | Kyselý, J., 2010: Recent severe heat waves in central Europe: how to view them in a long-term prospect?. – Int. J. Climatol. 30. 89–109. | pl_PL |
dc.references | Leung, L.R., L.O. Mearns, F. Giorgi, R.L. Wilby, 2003: Regional Climate Research. – Bull. Amer. Meteor. Soc. 84, 89–95. | pl_PL |
dc.references | Lise, W., R.S.J. Tol, 2002: Impact of Climate on Tourist Demand. – Climatic Change 55, 429–449. | pl_PL |
dc.references | Lisø, K.R., T. Kvande, H.O. Hygen, J.V. Thue, K. Harstveit, 2007: A frost decay exposure index for porous, mineral building materials. – Build. Environ. 42, 3547–3555. | pl_PL |
dc.references | Maraun, D., F. Wetterhall, A.M. Ireson, R.E. Chandler, E.J. Kendon, M. Widmann, S. Brienen, H.W. Rust, T. Sauter, M. Themeßl, V.K.C. Venema, K.P. Chun, C.M. Goodess, R.G. Jones, C. Onof, M. Vrac, I. Thiele- Eich, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. – Rev. Geophys. 48, RG3003. | pl_PL |
dc.references | Mateos, R.M., I. García-Moreno, J.M. Azañón, 2012: Freeze-thaw cycles and rainfall as triggering factors of mass movements in a warm Mediterranean region: the case of the Tramuntana Range (Majorca, Spain). – Landslides 9, 417–432. | pl_PL |
dc.references | Nakićenović, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grubler, T.Y. Jung, T. Kram, 2000: Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. – Technical report, Pacific Northwest National Laboratory, Richland,WA (US), Environmental Molecular Sciences Laboratory (US). | pl_PL |
dc.references | Niehörster, F., I. Fast, H. Huebener, U. Cubasch, 2008: The stream one ENSEMBLES projections of future climate change. – Technical report, ENSEMBLES Technical Report 3. ISSN 1752–2854. | pl_PL |
dc.references | M. McGuirk, T.G. Houston, A.H. Horvitz, M.F. Wehner, 2008: Climate variability and change with implications for transportation. – Transportation Research Board. | pl_PL |
dc.references | Piotrowski, P., J. J ˛ edruszkiewicz, 2013: Projections of thermal conditions for Poland for winters 2021–2050 in relation to atmospheric circulation. – Meteorol. Z. 22, 569–575. | pl_PL |
dc.references | Roeckner, E., G. Bauml, L. Bonaventura, 2005: IPCC DDC AR4 ECHAM5/MPI-OM run1. World Data Center for Climate. CERA-DB. – Technical report, Discussion paper, Max-Planck-Institut fuer Meteorologie. http://cerawww.dkrz. de/WDCC. | pl_PL |
dc.references | Schwartz, M.D., R. Ahas, A. Aasa, 2006: Onset of spring starting earlier across the Northern Hemisphere. – Global Change Biol. 12, 343–351. | pl_PL |
dc.references | Shukla, J., R. Hagedorn, M. Miller, T.N. Palmer, B. Hoskins, J. Kinter, J. Marotzke, J. Slingo, 2009: Strategies: Revolution in Climate Prediction is Both Necessary and Possible: A Declaration at theWorldModelling Summit for Climate Prediction. – Bull. Amer. Meteor. Soc. 90, 175–178. | pl_PL |
dc.references | Stine, A.R., P. Huybers, I.Y. Fung, 2009: Changes in the phase of the annual cycle of surface temperature. – Nature 457, 435–440. | pl_PL |
dc.references | Torma, C., J. Bartholy, R. Pongracz, Z. Bareza, E. Coppola, F. Giorgi, 2008: Adaptation of the RegCM3 climate model for the Carpathian Basin. – Idojaras 112, 233–247. | pl_PL |
dc.references | Vautard, R., A. Gobiet, S. Sobolowski, E. Kjellström, A. Stegehuis, P. Watkiss, T. Mendlik, O. Landgren, G. Nikulin, C. Teichmann, D. Jacob, 2014: The European climate under a 2 °C global warming. – Environ. Res. Lett. 9, 034006, DOI:10.1088/1748-9326/9/3/034006 | pl_PL |
dc.references | Wilcke, R.A.I., T. Mendlik, A. Gobiet, 2013: Multi-variable error correction of regional climatemodels. – Climatic Change 120, 871–887. | pl_PL |
dc.references | Yang, Z.-L., R.E. Dickinson, 1996: Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the Soil Moisture Workshop and evaluation of its performance. – Global Planet. Change 13, 117–134. | pl_PL |