dc.contributor.author | Górajski, Mariusz | |
dc.date.accessioned | 2015-08-18T09:35:44Z | |
dc.date.available | 2015-08-18T09:35:44Z | |
dc.date.issued | 2014-02-05 | |
dc.identifier.issn | 1420-8989 | |
dc.identifier.uri | http://hdl.handle.net/11089/11527 | |
dc.description | Acknowledgments:
The author wishes to thank Professor Anna Chojnowska-Michalik and the
referee for many helpful suggestions and comments. | pl_PL |
dc.description.abstract | We study a class of stochastic evolution equations in a Banach
space E driven by cylindrical Wiener process. Three different analytical
concepts of solutions: generalised strong, weak and mild are defined and
the conditions under which they are equivalent are given. We apply this
result to prove existence, uniqueness and continuity of weak solutions to
stochastic delay evolution equations. We also consider two examples of
these equations in non-reflexive Banach spaces: a stochastic transport
equation with delay and a stochastic delay McKendrick equation. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Basel | pl_PL |
dc.relation.ispartofseries | Integral Equations and Operator Theory; | |
dc.relation.ispartofseries | Integral Equations and Operator Theory;78 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.subject | Stochastic evolution equations, umd − Banach spaces | pl_PL |
dc.subject | mild solutions | pl_PL |
dc.subject | weak solutions | pl_PL |
dc.subject | generalised strong solutions | pl_PL |
dc.subject | stochastic partial differential equations with finite delay | pl_PL |
dc.title | On the Equivalence of Solutions for a Class of Stochastic Evolution Equations in a Banach Space | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 451–481 | pl_PL |
dc.contributor.authorAffiliation | University of Łódź, Faculty of Economics and Sociology, Department of Econometrics | pl_PL |
dc.references | Baker, C.T.H., Bocharov, G.A., Rihan, F.A.: A report on the use of delay differential equations in numerical modelling in the biosciences. Numer. Anal. Rep. 343, 146 (1999) | pl_PL |
dc.references | Barucci, E., Gozzi, F.: Optimal advertising with a continuum of goods. Ann. Oper. Res. 88, 15–29 (1999) | pl_PL |
dc.references | B´atkai, A., Piazzera, S.: Semigroups for Delay Equations, Research Notes in Mathematics 10, A K Peters Ltd., Wellesley, MA (2005) | pl_PL |
dc.references | Bobrowski, A.: Lord Kelvin’s method of images in semigroup theory. Semigroup Forum 81(3), 435–445 (2010) | pl_PL |
dc.references | Brzeźniak, Z., Neerven, J.M.A.M.van : Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem. StudiaMath. 143(1), 43– 74 (2000) | pl_PL |
dc.references | Chojnowska-Michalik, A.: Stochastic differential equations in Hilbert spaces. In: Probability Theory (Papers, VIIth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1976), vol. 5, pp. 53–74. Banach Center Publications (1979) | pl_PL |
dc.references | Cox, S., Górajski, M.: Vector-valued stochastic delay equations-a semigroup approach. Semigroup Forum 82, 389–411 (2011) | pl_PL |
dc.references | Cox, S., Veraar, M.: Vector-valued decoupling and the Burkholder–Davis– Gundy inequality. Ill. J. Math. 55(1):343–375 (2011) | pl_PL |
dc.references | Crewe, P.: Infinitely delayed stochastic evolution equations in UMD Banach spaces arXiv:1011.2615v1 | pl_PL |
dc.references | Da Prato, G., Kwapień, S., Zabczyk, J.: Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23(1), 1–23 (1987) | pl_PL |
dc.references | Da Prato, G.; Zabczyk, J.: Stochastic equations in infinite dimensions. In: Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992) | pl_PL |
dc.references | Denk, R.; Hieber, M.; Pruss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003) | pl_PL |
dc.references | Engel, K.; Nagel, R.: One-parameter semigroups for linear evolution equations. In: Graduate Texts in Mathematics, vol. 194. Springer-Verlag, New York (2000) | pl_PL |
dc.references | Erneux, T.: Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 3. Springer, New York (2009) | pl_PL |
dc.references | Garling, D.: Random martingale transform inequalities. In: Probability in Banach spaces 6, Sandbjerg, 1986, Progr. Probab. 20, pp. 101–119. Birkh¨auser Boston, Boston, MA (1990) | pl_PL |
dc.references | Górajski, M.: Vector-valued stochastic delay equations—a weak solution and its Markovian representation, arXiv preprint arXiv:1301.5300 | pl_PL |
dc.references | Kalton, N.J.; Weis, L.: The H∞-functional calculus and square function estimates, Manuscript in preparation | pl_PL |
dc.references | Kunze, M.C.: Martingale problems on Banach spaces, arXiv preprint arXiv:1009.2650 (2012) | pl_PL |
dc.references | Mao, X.: Stochastic Differential Equations and Their Applications. Horwood Publishing Series in Mathematics & Applications, Horwood, Chichester (1997) | pl_PL |
dc.references | Mohammed, S.E.A.: Stochastic Functional Differential Equations, Research Notes in Mathematics, vol. 99. Pitman, Boston (1984) | pl_PL |
dc.references | van Neerven, J.M.A.M.: The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Mathematics, vol. 1529. Springer-Verlag, Berlin (1992) | pl_PL |
dc.references | van Neerven, J.M.A.M.: Stochastic Evolution Equations, Notes to the 11th Internet Seminar (2008) | pl_PL |
dc.references | van Neerven, J.M.A.M., Veraar, M., Weis, L.: Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255, 940–993 (2008) | pl_PL |
dc.references | van Neerven, J.M.A.M.; Veraar, M.C.: On the stochastic Fubini theorem in infinite dimensions, in: Stochastic partial differential equations and applications— VII, Lecturer Notes in Pure Applied Mathematics, vol. 245, pp. 323–336. Chapman & Hall/CRC, Boca Raton, FL (2006) | pl_PL |
dc.references | van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Stochastic integration in UMD Banach spaces. Ann. Probab. 35(4), 1438–1478 (2007) | pl_PL |
dc.references | van Neerven, J.M.A.M., Weis, L.: Stochastic integration of functions with values in a Banach space. Studia Math. 166(2), 131–170 (2005) | pl_PL |
dc.references | Peszat, S.; Zabczyk, J.: Stochastic partial differential equations with L´evy noise. In: Encyclopedia of Mathematics and its Applications, vol. 113. Cambridge University Press, Cambridge (2007) | pl_PL |
dc.references | Qi-Min, Z., Wen-An, L., Zan-Kan, N.: Existence, uniqueness and exponential stability for stochastic age-dependent population. Appl. Math. Comput. 154, 183–201 (2004) | pl_PL |
dc.references | Veraar, M.: Stochastic integration in Banach spaces and applications to parabolic evolution equations. ISBN:978-90-9021380-4 (2006) | pl_PL |
dc.references | Veraar, M., Zimmerschied, J.: Non-autonomous stochastic Cauchy problems in Banach spaces. Studia Math. 185(1), 1–34 (2008) | pl_PL |
dc.references | Webb, G.: Theory of nonlinear age-dependent population dynamics, 89, CRC (1985) | pl_PL |
dc.contributor.authorEmail | mariuszg@math.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1007/s00020-013-2119-4 | |