dc.contributor.author | Mankiewicz-Boczek, Joanna | |
dc.contributor.author | Gągała, I. | |
dc.contributor.author | Jurczak, Tomasz | |
dc.contributor.author | Jaskulska, A. | |
dc.contributor.author | Pawełczyk, J. | |
dc.contributor.author | Dziadek, J. | |
dc.date.accessioned | 2015-08-31T11:00:13Z | |
dc.date.available | 2015-08-31T11:00:13Z | |
dc.date.issued | 2014-08-20 | |
dc.identifier.issn | 2391-5412 | |
dc.identifier.uri | http://hdl.handle.net/11089/11601 | |
dc.description.abstract | Water blooms dominated by cyanobacteria
are capable of producing hepatotoxins known as
microcystins. These toxins are dangerous to people and
to the environment. Therefore, for a better understanding
of the biological termination of this increasingly
common phenomenon, bacteria with the potential to
degrade cyanobacteria-derived hepatotoxins and the
degradative activity of culturable bacteria were studied.
Based on the presence of the mlrA gene, bacteria with a
homology to the Sphingopyxis and Stenotrophomonas
genera were identified as those presenting potential for
microcystins degradation directly in the water samples
from the Sulejów Reservoir (SU, Central Poland). However,
this biodegrading potential has not been confirmed in in
vitro experiments. The degrading activity of the culturable
isolates from the water studied was determined in more
than 30 bacterial mixes. An analysis of the biodegradation
of the microcystin-LR (MC-LR) together with an analysis of
the phylogenetic affiliation of bacteria demonstrated for
the first time that bacteria homologous to the Aeromonas
genus were able to degrade the mentioned hepatotoxin,
although the mlrA gene was not amplified. The maximal
removal efficiency of MC-LR was 48%. This study
demonstrates a new aspect of interactions between the
microcystin-containing cyanobacteria and bacteria from
the Aeromonas genus. | pl_PL |
dc.description.sponsorship | The authors would like to
acknowledge the European Cooperation in Science
and Technology, COST Action ES 1105 “CYANOCOST -
Cyanobacterial blooms and toxins in water resources:
Occurrence, impacts and management” for adding value
to this study through networking and knowledge sharing
with European experts and researchers in the field. The
Sulejów Reservoir is a part of the Polish National Long-
Term Ecosystem Research Network and the European
LTER site. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | DE GRUYTER | pl_PL |
dc.relation.ispartofseries | Open Life Sciences;2015 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.title | Bacteria homologus to Aeromonas capable of microcystin degradation | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 119–129 | pl_PL |
dc.contributor.authorAffiliation | Mankiewicz-Boczek J., Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz | pl_PL |
dc.contributor.authorAffiliation | Gągała I., European Regional Centre for Ecohydrology of the Polish Academy of Sciences | pl_PL |
dc.contributor.authorAffiliation | Jurczak T., European Regional Centre for Ecohydrology of the Polish Academy of Sciences | pl_PL |
dc.contributor.authorAffiliation | Jaskulska A., European Regional Centre for Ecohydrology of the Polish Academy of Sciences | pl_PL |
dc.contributor.authorAffiliation | Pawełczyk J., Institute for Medical Biology of the Polish Academy of Sciences | pl_PL |
dc.contributor.authorAffiliation | Dziadek J., Institute for Medical Biology of the Polish Academy of Sciences | pl_PL |
dc.references | Carvalho L., Miller C.A., Scott E.M., Codd G.A., Davies P.S., Tyler A.N., Cyanobacterial blooms: Statistical models describing risk factors for national-scale lake assessment and lake management, Sci. Total. Environ., 2011, 409, 5353–5358 | pl_PL |
dc.references | Bednarek A., Stolarska M., Ubraniak M., Zalewski M., Application of permeable reactive barrier for reduction of nitrogen load in the agricultural areas - preliminary results, Ecohydrology and Hydrobiology, 2010, 10, 355–362 | pl_PL |
dc.references | Kelly J.M., Kovar J.L., Modelling phosphorus capture by plants growing in a multispecies riparian buffer, Appl. Environ. Soil Sci., 2012, 2012, 1–7 | pl_PL |
dc.references | Kiedrzyńska E., Kiedrzyński M., Zalewski M., Flood sediment deposition and phosphorus retention in a lowland river floodplain: impact on water quality of a reservoir Sulejów, Poland, Ecohydrology and Hydrobiology, 2008, 8, 281–289 | pl_PL |
dc.references | Schmidt C.A., Clark. M.W., Evaluation of a denitrification wall to reduce surface water nitrogen loads, J. Environ. Quality., 2012, 41, 724–731 | pl_PL |
dc.references | Ho L., Hoefel D., Saint C.P., Newcombe G., Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter, Water Res., 2007, 41, 4685–4695 | pl_PL |
dc.references | Bourne D.G., Blakeley R.L., Riddles P., Jones G.J., Biodegradation of the cyanobacterial toxin microcystin-LR in natural water and biologically active slow sand filters, Water Res., 2006, 40, 1294–302 | pl_PL |
dc.references | Ji R.P., Lu X.W., Li X.N., Pu Y.P., Biological degradation of algae and microcystins by microbial enrichment on artificial media, Ecol. Eng., 2009, 35, 1584–1588 | pl_PL |
dc.references | Gągała I., Mankiewicz-Boczek J., Natural degradation of microcystins (cyanobacterial hepatotoxins) in fresh water – the future of modern treatment systems and water quality improvement. Pol. J. Environ. Stud., 2012, 21, 1125–1139 | pl_PL |
dc.references | Mou X., Lu X., Jacob J., Sun S., Heath R., Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in Lake Erie, PLoS One., 2013, 8, e61890 | pl_PL |
dc.references | Jing W., Sui G., Liu S., Characteristics of a microcystin-LR biodegrading bacterial isolate: Ochrobactrum sp. FDT5. Bull. Environ. Contam. Toxicol., 2014, 92(1), 119-122 | pl_PL |
dc.references | Ma G., Pei H., Hu W., Xu X., Ma C., Li X., The removal of cyanobacteria and their metabolites through anoxic biodegradation in drinking water sludge, Bioresour. Technol. 2014, 165C, 191-198 | pl_PL |
dc.references | Rapala J., Berg K.A., Lyra C., Niemi R.M., Manz W., Suomalainen S., et al., Paucibacter toxinivorans gen. nov. sp. nov. a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin, Int. J. Syst. Evol. Microbiol., 2005, 55, 1563–1568 | pl_PL |
dc.references | Lawton L.A., Welgamage A., Manage P.M., Edwards C., Novel bacterial strains for the removal of microcystins from drinking water, Water Sci. Technol., 2011, 63, 1137–1142 | pl_PL |
dc.references | Manage P.M., Edwards C., Singh B.K., Lawton L.A., Isolation and identification of novel microcystin-degrading bacteria, Appl. Environ. Microbiol., 2009, 75, 6924–6928 | pl_PL |
dc.references | Bourne D.G., Riddles P., Jones G.J., Smith W., Blakeley R.L. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin Microcystin-LR, Cultures, 2001, 16, 523–534 | pl_PL |
dc.references | Izydorczyk K., Jurczak T., Wojtal-Frankiewicz A., Skowron A., Mankiewicz-Boczek J., Tarczyńska M., Influence of abiotic and biotic factors on microcystin content in Microcystis aeruginosa cells in a eutrophic temperate reservoir, J. Plankton Res., 2008, 30, 393–400 | pl_PL |
dc.references | Jurczak T., Tarczyńska M., Izydorczyk K., Mankiewicz J., Zalewski M., Meriluoto J., Elimination of microcystins by water treatment processes — examples from Sulejów Reservoir, Poland, Water Res., 2005, 39, 2394–2406 | pl_PL |
dc.references | Jurczak T., Zastosowanie monitoringu toksyn sinicowych w celu optymalizacji technologii uzdatniania wody oraz strategii rekultywacji zbiorników zaporowych, PhD dissertation, University of Lodz, Poland, 2006, (in Polish) | pl_PL |
dc.references | Mankiewicz-Boczek J., Izydorczyk K., Romanowska-Duda Z., Jurczak T., Stefaniak K., Kokociński M., Detection and monitoring toxigenicity of cyanobacteria by application of molecular methods, Environ. Toxicol., 2006, 21, 380–387 | pl_PL |
dc.references | Mankiewicz-Boczek J., Urbaniak M., Romanowska-Duda Z., Izydorczyk K., Toxic Cyanobacteria strains in lowland dam reservoir (Sulejów Res. Central Poland): Amplification of mcy genes for detection and identification, Pol. J. Ecol., 2006, 54, 171–180 | pl_PL |
dc.references | Tarczyńska M., Romanowska-Duda Z., Jurczak T., Zalewski M., Toxic cyanobacterial blooms in a drinking water reservoir - causes consequences and management strategy, Water Sci. Technol.: Water Supply., 2001, 1, 237–246 | pl_PL |
dc.references | Zalewski M., Ecohydrology - The scientific background to use ecosystem properties as management tools toward sustainability of water resources, Guest Editorial Ecol. Eng., 2000, 16, 41647 | pl_PL |
dc.references | Giovannoni S.J., DeLong E.F., Schmidt T.M., Pace N.R., Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton, Appl. Environ. Microbiol., 1990, 56, 2572-2575 | pl_PL |
dc.references | Rantala A., Rajaniemi-Wacklin P., Lyra C., Lepistö L., Rintala J., Mankiewicz-Boczek J., et al., Detection of microcystinproducing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors, Appl. Environ. Microbiol., 2006, 72, 6101–6110 | pl_PL |
dc.references | Saito T., Okano K., Park H., Itayama T., Inamori Y., Neilan B.A., et al., Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes, FEMS Microbiol. Lett., 2003, 229(2), 271-276 | pl_PL |
dc.references | Zhang Z., Schwartz S., Wagner L., Miller W., A greedy algorithm for aligning DNA sequences, J. Comput. Biol., 2000, 7, 203-221 | pl_PL |
dc.references | Orphan V.J., Hinrichs K., Iii W.U., Paull C.K., Taylor L.T., Sylva S.P., et al., Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments, J. Appl. Microbiol., 2001, 67, 1922–1934 | pl_PL |
dc.references | Huson D.H., Scornavacca. C., Dendroscope 3: An Interactive Tool for Rooted Phylogenetic Trees and Networks, Syst. Biol., 2012, 61, 1061-1067 | pl_PL |
dc.references | Gągała I., Izydorczyk K., Jurczak T., Pawełczyk J., Dziadek J., Wojtal-Frankiewicz A., et al., Role of environmental factors and toxic genotypes in the regulation of microcystins-producing cyanobacterial blooms, Microbial Ecol., 2014, 67(2), 465-479 | pl_PL |
dc.references | Orr P.T., Jones. G.J., Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures, Limnol. Oceanogr., 1998, 43, 1604 | pl_PL |
dc.references | Okano K., Shimizu K., Kawauchi Y., Maseda H., Utsumi M., Zhang Z., et al., Characteristics of a microcystin-degrading bacterium under alkaline environmental conditions, J. Toxicol., 2009, 2009, 41648 | pl_PL |
dc.references | Chen J., Hu L., Bin Zhou W., Yan S.H., Yang J.D., Xue Y.F., et al., Degradation of microcystin-LR and RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu, China, Int. J. Mol. Sci., 2010, 11, 896–911 | pl_PL |
dc.references | Park H.D., Sasaki Y., Maruyama T., Yanagisawa E., Hiraishi A., Kato K., Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake, Environ. Toxicol., 2001, 16, 337–343 | pl_PL |
dc.references | Ishii H., Nishijima M., Abe T., Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium, Water Res., 2004, 38, 2667–2676 | pl_PL |
dc.references | Wang J., Wu P., Chen J., Yan H., Biodegradation of microcystin- RR by a new isolated Sphingopyxis sp. USTB-05, Chin. J. Chem. Eng., 2010, 18, 1-5 | pl_PL |
dc.references | Zhang, M., Pan G., Yan H., Microbial biodegradation of microcystin-RR by bacterium Sphingopyxis sp. USTB-05, 2010, J. Environ. Sci., 22, 168–175 | pl_PL |
dc.references | Yan H., Wang J., Chen J., Wei W., Wang H., Wang H., Characterization of the first step involved in enzymatic pathway for microcystin-RR biodegraded by Sphingopyxis sp. USTB-05, Chemosphere, 2012, 87, 12-18 | pl_PL |
dc.references | Ho L., Tang T., Monis P.T., Hoefel D., Biodegradation of multiple cyanobacterial metabolites in drinking water supplies, Chemosphere, 2012, 87, 1149-1154 | pl_PL |
dc.references | Mateos D., Anguita J., Naharro G., Paniagua C., Influence of growth temperature on the production of extracellular virulence factors and pathogenicity of environmental and human strains of Aeromonas hydrophila, J. Appl. Bacteriol., 1993, 74, 111–118 | pl_PL |
dc.references | Mano S., Growth/survival of natural flora and Aeromonas hydrophila on refrigerated uncooked pork and turkey packaged in modified atmospheres, Food Microbiol., 2000, 17, 657–669 | pl_PL |
dc.references | Tomás J.M., The main Aeromonas pathogenic factors, ISRN Microbiol., 2012, 2012, 1–22 | pl_PL |
dc.references | Gaoshan P., Zhangli H., Anping L., Shuangfei L., Effect of crude microcystin on the viable but non-culturable state of Aeromonas sobria in aquatic environment, J. Lake Sci., 2008, 20, 105-109 (in chinese) | pl_PL |
dc.references | Berg K.A., Lyra C., Niemi R.M., Heens B., Hoppu K., Erkomaa K., et al., Virulence genes of Aeromonas isolates bacterial endotoxins and cyanobacterial toxins from recreational water samples associated with human health symptoms, J. Water Health., 2011, 9, 670-679 | pl_PL |
dc.references | Berg K.A., Lyra C., Sivonen K., Paulin L., Suomalainen S., Tuomi P., et al., High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms, ISME J., 2009, 3, 314–325 | pl_PL |
dc.references | Østensvik O., Skulberg O.M., Underdal B., Hormazabal V., Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria - a comparative study of bacterial bioassays, J. Appl. Microbiol., 1998, 84, 1117–1124 | pl_PL |
dc.references | Bomo A-M., Tryland I., Haande S., Hagman C.H.C., Utkilen H., The impact of cyanobacteria on growth and death of opportunistic pathogenic bacteria, Water Sci. Technol., 2011, 64, 384–390 | pl_PL |
dc.references | Liu Y-M., Chen M-J., Wang M-H., Jia R-B., Li L. Inhibition of Microcystis aeruginosa by the extracellular substances from an Aeromonas sp., J. Microbiol. Biotechnol., 2013, 23, 1304-1307 | pl_PL |
dc.references | Lee Y-J., Jung J-M., Jang M-H., Ha K., Joo G-J. Degradation of microcystins by adsorbed bacteria on a granular active carbon (GAC) filter during the water treatment process, J. Environ Biology/Academy of Environmental Biology, India, 2006, 27, 317–322 | pl_PL |
dc.references | Dziga D., Wasylewski M., Wladyka B., Nybom S., Meriluoto J. Microbial degradation of microcystins, Chem. Res. Toxicol., 2013, 26, 841-852 | pl_PL |
dc.references | Lemes G.A.F., Kersanach R., Pinto L.D.S., Dellagostin O.A., Yunes J.S., Matthiensen A., Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon, Ecotoxicol. Environ Saf., 2008, 69, 358–365 | pl_PL |
dc.references | Hu L., Bin Yang J.D., Zhou W., Yin Y.F., Chen J., Shi Z.Q., Isolation of a Methylobacillus sp. that degrades microcystin toxins associated with cyanobacteria, New Biotechnol., 2009, 26, 205–211 | pl_PL |
dc.references | Takenaka S., Watanabe. M.F., Microcystin-LR degradation by Pseudomonas aeruginosa alkaline protease, Chemosphere, 1997, 34, 749–757 | pl_PL |
dc.references | Eleuterio L., Batista. J.R., Biodegradation studies and sequencing of microcystin-LR degrading bacteria isolated from a drinking water biofilter and a fresh water lake, Toxicon, 2010, 55, 1434–1442 | pl_PL |
dc.references | Yang F., Zhou Y., Yin L., Zhu G., Liang G., Pu Y., Microcystindegrading activity of an indigenous bacterial strain Stenotrophomonas acidaminiphila MC-LTH2 isolated from Lake Taihu. PLoS ONE, 2014, 9(1): e86216 | pl_PL |
dc.contributor.authorEmail | j.mankiewicz@erce.unesco.lodz.pl | pl_PL |
dc.identifier.doi | 10.1515/biol-2015-0012 | |
dc.relation.volume | 10 | pl_PL |