dc.contributor.author | Nichita, Florin F. | |
dc.contributor.author | Parashar, Deepak | |
dc.contributor.author | Zielinski, Bartosz | |
dc.date.accessioned | 2015-10-01T05:34:44Z | |
dc.date.available | 2015-10-01T05:34:44Z | |
dc.date.issued | 2012-10-31 | |
dc.identifier.issn | 2090-6293 | |
dc.identifier.uri | http://hdl.handle.net/11089/12025 | |
dc.description.abstract | Semientwining structures are proposed as concepts simpler than entwining structures, yet they are shown to have interesting
applications in constructing intertwining operators and braided algebras, lifting functors, finding solutions for Yang-Baxter systems,
and so forth. While for entwining structures one can associate corings, for semientwining structures one can associate comodule
algebra structures where the algebra involved is a bialgebra satisfying certain properties.
Remove selected | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Hindawi Publishing Corporation | pl_PL |
dc.relation.ispartofseries | ISRN Algebra; | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.title | Semientwining Structures and Their Applications | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-9 | pl_PL |
dc.contributor.authorAffiliation | Nichita Florin F., Institute of Mathematics “Simion Stoilow” of the Romanian Academy | pl_PL |
dc.contributor.authorAffiliation | Parashar Deepak, Cambridge Cancer Trials Centre, Department of Oncology, University of Cambridge | pl_PL |
dc.contributor.authorAffiliation | Zieliński Bartosz, Department of eoretical Physics and Informatics, University of Łódź | pl_PL |
dc.references | M. Marcolli and D. Parashar, Quantum Groups and Noncommutative Spaces, Vieweg-Tuebner, 2010. | pl_PL |
dc.references | T. Brzeziński and S. Majid, “Coalgebra bundles,” Communications in Mathematical Physics, vol. 191, no. 2, pp. 467–492, 1998. | pl_PL |
dc.references | J. Beck, “Distributive laws,” in Seminar on Triples and Categorical Homology eory, B. Eckmann, Ed., vol. 80 of Springer Lecture Notes in Mathematics, pp. 119–140, Springer, Berlin, Germany, 1969. | pl_PL |
dc.references | L. Hlavatý, “Algebraic framework for quantization of nonultralocal models,” Journal of Mathematical Physics, vol. 36, no. 9, pp. 4882–4897, 1995. | pl_PL |
dc.references | L. Hlavaty and L. Snobl, “Solution of a Yang-Baxter system,” http://arxiv.org/abs/math/9811016. | pl_PL |
dc.references | T. Brzeziński and F. F. Nichita, “Yang-Baxter systems and entwining structures,” Communications in Algebra, vol. 33, no. 4, pp. 1083–1093, 2005. | pl_PL |
dc.references | B. R. Berceanu, F. F. Nichita, and C. Popescu, “Algebra structures arising from Yang-Baxter systems,” http://arxiv .org/abs/1005.0989. | pl_PL |
dc.references | F. F. Nichita and D. Parashar, “Spectral-parameter dependent Yang-Baxter operators and Yang-Baxter systems from algebra structures,” Communications in Algebra, vol. 34, no. 8, pp. 2713–2726, 2006. | pl_PL |
dc.references | F. F. Nichita and D. Parashar, “New constructions of Yang- Baxter systems,” AMS Contemporary Mathematics, vol. 442, pp. 193–200, 2007. | pl_PL |
dc.references | F. F. Nichita and C. Popescu, “Entwined bicomplexes,” Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, vol. 52, no. 2, pp. 161–176, 2009. | pl_PL |
dc.references | R. Wisbauer, “Algebras versus coalgebras,” Applied Categorical Structures, vol. 16, no. 1-2, pp. 255–295, 2008. | pl_PL |
dc.references | S. Caenepeel and K. Janssen, “Partial entwining structures,” Communications in Algebra, vol. 36, no. 8, pp. 2923–2946, 2008. | pl_PL |
dc.references | P. Schauenburg, “Doi-Koppinen Hopf modules versus entwined modules,” New York Journal of Mathematics, vol. 6, pp. 325–329, 2000. | pl_PL |
dc.references | T. Brzeziński, “Deformation of algebra factorisations,” Communications in Algebra, vol. 29, no. 2, pp. 737–748, 2001 | pl_PL |
dc.references | S. Dăscălescu and F. Nichita, “Yang-Baxter operators arising from (co)algebra structures,” Communications in Algebra, vol. 27, no. 12, pp. 5833–5845, 1999. | pl_PL |
dc.references | F. F. Nichita, Non-Linear Equations, Quantum Groups and Duality eorems: A Primer on the Yang-Baxter Equation, VDM, 2009. | pl_PL |
dc.references | J. López Peña, F. Panaite, and F. Van Oystaeyen, “General twisting of algebras,” Advances in Mathematics, vol. 212, no. 1, pp. 315–337, 2007. | pl_PL |
dc.references | J. C. Baez and A. Lauda, “A prehistory of n-categorical physics,” in Deep Beauty: Understanding the Quantum World rough Mathematical Innovation, H. Halvorson, Ed., pp. 13–128, Cambridge University Press, Cambridge, UK, 2011. | pl_PL |
dc.references | J. C. Baez, “Braids and Quantization,” http://math.ucr .edu/home/baez/braids. | pl_PL |
dc.references | F. Nichita, “Self-inverse Yang-Baxter operators from (co)algebra structures,” Journal of Algebra, vol. 218, no. 2, pp. 738–759, 1999. | pl_PL |
dc.references | P. T. Johnstone, “Adjoint liing theorems for categories of algebras,” e Bulletin of the London Mathematical Society, vol. 7, no. 3, pp. 294–297, 1975. | pl_PL |
dc.references | R. Wisbauer, “Liing theorems for tensor functors on module categories,” Journal of Algebra and its Applications, vol. 10, no. 1, pp. 129–155, 2011. | pl_PL |
dc.references | J. C. Baez, “R-commutative geometry and quantization of Poisson algebras,” Advances in Mathematics, vol. 95, no. 1, pp. 61–91, 1992. | pl_PL |
dc.references | M. Gerhold, S. Kietzmann, and S. Lachs, “Additive deformations of Braided Hopf algebras,” Banach Center Publications, vol. 96, pp. 175–191, 2011. | pl_PL |
dc.references | D. Tambara, “The coendomorphism bialgebra of an algebra,” Journal of the Faculty of Science, vol. 37, no. 2, pp. 425–456, 1990. | pl_PL |
dc.contributor.authorEmail | dp409@cam.ac.uk | pl_PL |
dc.identifier.doi | http://dx.doi.org/10.1155/2013/817919 | |
dc.relation.volume | 2013 | pl_PL |