Pokaż uproszczony rekord

dc.contributor.authorAndrzejewski, Krzysztof
dc.date.accessioned2016-04-05T11:32:02Z
dc.date.available2016-04-05T11:32:02Z
dc.date.issued2014
dc.identifier.issn0370-2693
dc.identifier.urihttp://hdl.handle.net/11089/17684
dc.description.abstractDynamical systems invariant under the action of the l-conformal Newton–Hooke algebras are constructed by the method of nonlinear realizations. The relevant first order Lagrangians together with the corresponding Hamiltonians are found. The relation to the Galajinsky and Masterov [24] approach as well as the higher derivatives formulation is discussed. The generalized Niederer's transformation is presented which relates the systems under consideration to those invariant under the action of the l-conformal Galilei algebra [25]. As a nice application of these results an analogue of Niederer's transformation, on the Hamiltonian level, for the Pais–Uhlenbeck oscillator is constructed.pl_PL
dc.description.sponsorshipSpecial thanks are to Piotr Kosiński for valuable comments and suggestions. The discussions with Joanna Gonera and Paweł Maślanka are gratefully acknowledged. The work is supported by the grant of National Research Center number DEC-2013/09/B/ST2/ 02205.pl_PL
dc.language.isoenpl_PL
dc.publisherElsevier B.V.pl_PL
dc.relation.ispartofseriesPhysics Letters B;738
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleConformal Newton–Hooke algebras, Niederer's transformation and Pais–Uhlenbeck oscillatorpl_PL
dc.typeArticlepl_PL
dc.page.number405–411pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Department of Computer Sciencepl_PL
dc.referencesH. Bacry, J.M. Lévy-Leblond J. Math. Phys., 9 (1968), p. 1605pl_PL
dc.referencesG.W. Gibbons, C.E. Patricot Class. Quantum Gravity, 20 (2003), p. 5225pl_PL
dc.referencesY. Tian, H.-Y. Guo, C.-G. Huang, Z. Xu, B. Zhou Phys. Rev. D, 71 (2005), p. 044030pl_PL
dc.referencesC. Leiva, M.S. Plyushchay Ann. Phys., 307 (2003), p. 372pl_PL
dc.referencesA. Bagchi, R. Gopakumar J. High Energy Phys., 0907 (2009), p. 037pl_PL
dc.referencesM. Alishahiha, A. Davody, A. Vahedi J. High Energy Phys., 0908 (2009), p. 022pl_PL
dc.referencesP. Havas, J. Plebański J. Math. Phys., 19 (1978), p. 482pl_PL
dc.referencesM. Henkel J. Stat. Phys., 75 (1994), p. 1023pl_PL
dc.referencesJ. Negro, M.A. del Olmo, A. Rodriguez-Marco J. Math. Phys., 38 (1997), p. 3810pl_PL
dc.referencesC. Duval, P.A. Horvathy J. Phys. A, 42 (2009), p. 465206pl_PL
dc.referencesJ. Lukierski, P.C. Stichel, W.J. Zakrzewski Phys. Lett. A, 357 (2006), p. 1pl_PL
dc.referencesF.L. Liu, Y. Tian Phys. Lett. A, 372 (2008), p. 6041pl_PL
dc.referencesC. Duval, M. Hassaine, P.A. Horvathy Ann. Phys., 324 (2009), p. 1158pl_PL
dc.referencesA. Galajinsky Nucl. Phys. B, 832 (2010), p. 586pl_PL
dc.referencesJ. Gomis, K. Kamimura Phys. Rev. D, 85 (2012), p. 045023pl_PL
dc.referencesK. Andrzejewski, J. Gonera, P. Maślanka Phys. Rev. D, 86 (2012), p. 065009pl_PL
dc.referencesK. Andrzejewski, J. Gonera Phys. Lett. B, 721 (2013), p. 319pl_PL
dc.referencesN. Aizawa, Y. Kimura, J. Segar J. Phys. A, 46 (2013), p. 405204pl_PL
dc.referencesS.R. Coleman, J. Wess, B. Zumino Phys. Rev., 177 (1969), p. 2239pl_PL
dc.referencesC.G. Callan, S.R. Coleman, J. Wess, B. Zumino Phys. Rev., 177 (1969), p. 2247pl_PL
dc.referencesE.A. Ivanov, V.I. Ogievetsky Teor. Mat. Fiz., 25 (1975), p. 164pl_PL
dc.referencesS. Fedoruk, E. Ivanov, J. Lukierski Phys. Rev. D, 83 (2011), p. 085013pl_PL
dc.referencesA.V. Galajinsky, I. Masterov Nucl. Phys. B, 866 (2013), p. 212pl_PL
dc.referencesA. Galajinsky, I. Masterov Phys. Lett. B, 723 (2013), p. 190pl_PL
dc.referencesK. Andrzejewski, J. Gonera, P. Kosiński, P. Maślanka Nucl. Phys. B, 876 (2013), p. 309pl_PL
dc.referencesU. Niederer Helv. Phys. Acta, 46 (1973), p. 191pl_PL
dc.referencesP.-M. Zhang, P.A. Horvathy Phys. Lett. B, 702 (2011), p. 177pl_PL
dc.referencesC. Duval, P. Horvathy J. Phys. A, 44 (2011), p. 335203pl_PL
dc.referencesA. Galajinsky, I. Masterov Phys. Lett. B, 702 (2011), p. 265pl_PL
dc.referencesK. Andrzejewski, A. Galajinsky, J. Gonera, I. Masterov Nucl. Phys. B, 885 (2014), p. 150pl_PL
dc.referencesS. Fedoruk, E. Ivanov, O. Lechtenfeld J. Phys. A, 45 (2012), p. 173001pl_PL
dc.referencesA. Gonera Ann. Phys., 335 (2013), p. 61pl_PL
dc.referencesN.L. Holanda, F. Toppan J. Math. Phys., 55 (2014), p. 061703pl_PL
dc.referencesE.A. Ivanov, S.O. Krivonos, V.M. Leviant J. Phys. A, 22 (1989), p. 345pl_PL
dc.referencesL. Fadeev, R. Jackiw Phys. Rev. Lett., 60 (1988), p. 1692pl_PL
dc.referencesA. Pais, G.E. Uhlenbeck Phys. Rev., 79 (1950), p. 145pl_PL
dc.referencesK. Andrzejewski, J. Gonera Phys. Rev. D, 88 (2013), p. 065011pl_PL
dc.referencesK. Andrzejewski Hamiltonian formalisms and symmetries of the Pais–Uhlenbeck oscillatorpl_PL
dc.referencesI. Masterov Dynamical realizations of N=1l-conformal Galilei superalgebrapl_PL
dc.contributor.authorEmailk-andrzejewski@uni.lodz.plpl_PL
dc.identifier.doi10.1016/j.physletb.2014.10.008


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska