Show simple item record

dc.contributor.authorBalcerczyk, Aneta
dc.contributor.authorGajewska, Agnieszka
dc.contributor.authorMacierzyńska-Piotrowska, Ewa
dc.contributor.authorPawelczyk, Tomasz
dc.contributor.authorBartosz, Grzegorz
dc.contributor.authorSzemraj, Janusz
dc.description.abstractA growing number of studies confirm an important effect of diet, lifestyle and physical activity on health status, the ageing process and many metabolic disorders. This study focuses on the influence of a diet supplement, NucleVital®Q10 Complex, on parameters related to redox homeostasis and ageing. An experimental group of 66 healthy volunteer women aged 35–55 supplemented their diet for 12 weeks with the complex, which contained omega-3 acids (1350 mg/day), ubiquinone (300 mg/day), astaxanthin (15 mg/day), lycopene (45 mg/day), lutein palmitate (30 mg/day), zeaxanthine palmitate (6 mg/day), L-selenomethionine (330 mg/day), cholecalciferol (30 µg/day) and α-tocopherol (45 mg/day). We found that NucleVital®Q10 Complex supplementation significantly increased total antioxidant capacity of plasma and activity of erythrocyte superoxide dismutase, with slight effects on oxidative stress biomarkers in erythrocytes; MDA and 4-hydroxyalkene levels. Apart from the observed antioxidative effects, the tested supplement also showed anti-ageing activity. Analysis of expression of SIRT1 and 2 in PBMCs showed significant changes for both genes on a mRNA level. The level of telomerase was also increased by more than 25%, although the length of lymphocyte telomeres, determined by RT-PCR, remained unchanged. Our results demonstrate beneficial effects concerning the antioxidant potential of plasma as well as biomarkers related to ageing even after short term supplementation of diet with NucleVital®Q10 Complex.pl_PL
dc.description.sponsorshipThe study was financed form grant project Marinex Science Grant 507-16-034.pl_PL
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rightsUznanie autorstwa 3.0 Polska*
dc.subjectredox homeostasispl_PL
dc.subjectdiet supplementspl_PL
dc.titleEnhanced Antioxidant Capacity and Anti-Ageing Biomarkers after Diet Micronutrient Supplementationpl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Department of Molecular Biophysicspl_PL
dc.contributor.authorAffiliationMedical University of Lodz, Department of Affective and Psychotic Disorderspl_PL
dc.contributor.authorAffiliationMedical University in Lodz, Department of Medical Biochemistrypl_PL
dc.referencesHarman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11, 298–300pl_PL
dc.referencesSpeakman, J.R.; Selman, C. The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays 2011, 33, 255–259pl_PL
dc.referencesKirkwood, T.B.; Kowald, A. The free-radical theory of ageing—Older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. Bioessays 2012, 34, 692–700pl_PL
dc.referencesZimniak, P. Relationship of electrophilic stress to aging. Free Radic. Biol. Med. 2011, 51, 1087–1105pl_PL
dc.referencesPallauf, K.; Bendall, J.K.; Scheiermann, C.; Watschinger, K.; Hoffmann, J.; Roeder, T.; Rimbach, G. Vitamin C and lifespan in model organisms. Food Chem. Toxicol. 2013, 58, 255–263pl_PL
dc.referencesBanks, R.; Speakman, J.R.; Selman, C. Vitamin E supplementation and mammalian lifespan. Mol. Nutr. Food Res. 2010, 54, 719–725pl_PL
dc.referencesErnst, I.M.; Pallauf, K.; Bendall, J.K.; Paulsen, L.; Nikolai, S.; Huebbe, P.; Roeder, T.; Rimbach, G. Vitamin E supplementation and lifespan in model organisms. Ageing Res. Rev. 2013, 12, 365–375pl_PL
dc.referencesCarney, J.M.; Starke-Reed, P.E.; Oliver, C.N.; Landum, R.W.; Cheng, M.S.; Wu, J.F.; Floyd, R.A. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc. Natl. Acad. Sci. USA. 1991, 88, 3633–3636pl_PL
dc.referencesShetty, R.A.; Forster, M.J.; Sumien, N. Coenzyme Q(10) supplementation reverses age-related impairments in spatial learning and lowers protein oxidation. Age (Dordr) 2013, 35, 1821–1834pl_PL
dc.referencesBai, H.; Liu, R.; Chen, H.L.; Zhang, W.; Wang, X.; Zhang, X.D.; Li, W.L.; Hai, C.X. Enhanced antioxidant effect of caffeic acid phenethyl ester and Trolox in combination against radiation induced-oxidative stress. Chem. Biol. Interact. 2014, 207, 7–15pl_PL
dc.referencesStefanska, B.; Salamé, P.; Bednarek, A.; Fabianowska-Majewska, K. Comparative effects of retinoic acid, vitamin D and resveratrol alone and in combination with adenosine analogues on methylation and expression of phosphatase and tensin homologue tumour suppressor gene in breast cancer cells. Br. J. Nutr. 2012, 107, 781–790pl_PL
dc.referencesBouayed, J.; Bohn, J. Exogenous antioxidants—Double-edged swords in cellular redox state. Oxidative Med. Cell. Longev. 2010, 3, 228–237pl_PL
dc.referencesNogala-Kałucka, M.; Dwiecki, K.; Siger, A.; Górnaś, P.; Polewski, K.; Ciosek, S. Antioxidant synergism and antagonism between tocotrienols, quercetin and rutin in model system. Acta Aliment. 2013, 42, 360–370pl_PL
dc.referencesPodmore, I.D.; Griffiths, H.R.; Herbert, K.E.; Mistry, N.; Mistry, P.; Lunec, J. Vitamin C exhibits pro-oxidant properties. Nature 1998, 392, 559pl_PL
dc.referencesHalliwell, B. Phagocyte-derived reactive species: Salvation or suicide? Trends Biochem. Sci. 2006, 31, 509–515pl_PL
dc.referencesRice-Evans, C. Flavonoid antioxidants. Curr. Med. Chem. 2001, 8, 797–807pl_PL
dc.referencesLiu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517S–520Spl_PL
dc.referencesValko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84pl_PL
dc.referencesPriemé, H.; Loft, S.; Nyyssönen, K.; Salonen, J.T.; Poulsen, H.E. No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2'-deoxyguanosine excretion in smokers. Am. J. Clin. Nutr. 1997, 65, 503–507pl_PL
dc.referencesBartosz, G. Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radic. Res. 2010, 44, 711–720pl_PL
dc.referencesNagyova, A.; Krajcovivova-Kudlackova, M.; Horska, A.; Smolkowa, B.; Blazicek, P.; Raslova, K.; Collins, A.; Dusinska, M. Lipid peroxidation in men after dietary supplementation with a mixure of antioxidant nutrients. Bratisl. Lek. Listy 2004, 105, 277–280pl_PL
dc.referencesHeinrich, U.; Tronnier, H.; Stahl, W.; Bejot, M.; Maurette, J.M. Antioxidant supplements improve parameters related to skin structure in humans. Skin Pharmacol. Physiol. 2006, 19, 224–231pl_PL
dc.referencesGoraca, A. Assessment of total antioxidant capacity in human plasma. Folia Med. (Plovdiv.) 2004, 46, 16–21pl_PL
dc.referencesZhan, Z.J.; Zhou, Z.G.; Shan, W.G. Preparation and characterization of Cu,Zn-superoxide dismutase covalently modified by polyunsaturated fatty acids. Biochemistry (Mosc.) 2009, 74, 1266–1269pl_PL
dc.referencesMali, P.Y. Beneficial effect of extracts of Premna integrifolia root on human leucocytes and erythrocytes against hydrogen peroxide induced oxidative damage. Chron. Young Sci. 2014, 5, 53–58pl_PL
dc.referencesScott, M.D.; Eaton, J.W.; Kuypers, F.A.; Chiu, D.T.; Lubin, B.H. Enhancement of erythrocyte superoxide dismutase activity: Effects on cellular oxidant defense. Blood 1989, 74, 2542–2549pl_PL
dc.referencesGuerra-Araiza, C.; Álvarez-Mejía, A.L.; Sánchez-Torres, S.; Farfan-García, E.; Mondragón-Lozano, R.; Pinto-Almazán, R.; Salgado-Ceballos, H. Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic. Res. 2013, 47, 451–462pl_PL
dc.referencesPan, M.H.; Lai, C.S.; Tsai, M.L.; Wu, J.C.; Ho, C.T. Molecular mechanisms for anti-aging by natural dietary compounds. Mol. Nutr. Food Res. 2012, 56, 88–115pl_PL
dc.referencesHwang, J.W.; Yao, H.; Caito, S.; Sundar, I.K.; Rahman, I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic. Biol. Med. 2013, 61C, 95–110pl_PL
dc.referencesHa, Ch.W.; Huh, W-K. The implication of Sir2 in replicative aging and senescence in Saccharomyces cerevisiae. Aging 2011, 3, 319–324pl_PL
dc.referencesKomulainen, P.; Pedersen, M.; Hänninen, T.; Bruunsgaard, H.; Lakka, T.A.; Kivipelto, M.; Hassinen, M.; Rauramaa, T.H.; Pedersen, B.K.; Rauramaa, R. BDNF is a novel marker of cognitive function in ageing women: The DR’s EXTRA Study. Neurobiol. Learn. Mem. 2008, 90, 596–603pl_PL
dc.referencesLaske, C.; Stransky, E.; Leyhe, T.; Eschweiler, G.W.; Wittorf, A.; Richartz, E.; Bartels, M.; Buchkremer, G.; Schott, K. Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J. Neural Transm. 2006, 113, 1217–1224pl_PL
dc.referencesYasutake, C.; Kuroda, K.; Yanagawa, T.; Okamura, T.; Yoneda, H. Serum BDNF, TNF-alpha and IL-1beta levels in dementia patients: Comparison between Alzheimer’s disease and vascular dementia. Eur. Arch. Psychiatry Clin. Neurosci. 2006, 256, 402–406pl_PL
dc.referencesTakubo, K.; Aida, J.; Izumiyama-Shimomura, N.; Ishikawa, N.; Sawabe, M.; Kurabayashi, R.; Shiraishi, H.; Arai, T.; Nakamura, K.-I. Changes of telomere length with aging. Geriatr. Gerontol. Int. 2010, 10, 197–206pl_PL
dc.referencesCassidy, A.; de Vivo, I.; Liu, Y.; Han, J.; Prescott, J.; Hunter, D.J.; Rimm, E.B. Associations between diet, lifestyle factors, and telomere length in women. Am. J. Clin. Nutr. 2010, 91, 1273–1280pl_PL
dc.referencesCelec, P.; Hodosy, J.; Palffy, R.; Gardlik, R.; Halcak, L.; Ostatnikova, D. The short-term effects of soybean intake on oxidative and carbonyl stress in mena and women. Molecules 2013, 18, 5190–5200pl_PL
dc.referencesPérez-López, F.R.; Brincat, M.; Erel, C.T.; Tremollieres, F.; Gambacciani, M.; Lambrinoudaki, I.; Moen, M.H.; Schenck-Gustafsson, K.; Vujovic, S.; Rozenberg, S.; et al. EMAS position statement: Vitamin D and postmenopausal health. Maturitas 2012, 71, 83–88pl_PL
dc.referencesKomoroski, M.; Azad, N.; Camacho, P. Disorders of bone and bone mineral metabolism. Handb. Clin. Neurol. 2014, 120, 865–887pl_PL
dc.referencesHaussler, M.R.; Whitfield, G.K.; Kaneko, I.; Haussler, C.A.; Hsieh, D.; Hsieh, J.C.; Jurutka, P.W. Molecular mechanisms of vitamin D action. Calcif. Tissue Int. 2013, 92, 77–98pl_PL
dc.referencesDong, J.; Lau, C.W.; Wong, S.L.; Huang, Y. Cardiovascular benefits of vitamin D. Sheng Li Xue Bao 2014, 25, 30–36pl_PL
dc.referencesNorman, P.E.; Powell, J.T. Vitamin D and cardiovascular disease. Circ. Res. 2014, 114, 379–393pl_PL
dc.referencesRauchová, H.; Battino, M.; Fato, R.; Lenaz, G.; Drahota, Z. Coenzyme Q-pool function in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria. J. Bioenerg. Biomembr. 1992, 24, 235–241pl_PL
dc.referencesLenaz, G.; Battino, M.; Castelluccio, C.; Fato, R.; Cavazzoni, M.; Rauchova, H.; Bovina, C.; Formiggini, G.; Parenti Castelli, G. Studies on the role of ubiquinone in the control of the mitochondrial respiratory chain. Free Radic. Res. Commun. 1990, 8, 317–27pl_PL
dc.referencesMalmsten, C.L.; Lignell, A. Dietary Supplementation with Astaxanthin-Rich Algal Meal Improves Strength Endurance—A Double Blind Placebo Controlled Study on Male Students. Carotenoid Sci. 2008, 13, 20–22pl_PL
dc.referencesRao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216pl_PL
dc.referencesHolick, M.F. Vitamin D and Health: Evolution, Biologic Functions, and Recommended Dietary Intakes for Vitamin D. Clin. Rev. Bone Miner. Metab. 2009, 7, 2–19pl_PL
dc.referencesEtminan, M.; Gill, S.S.; Samii, A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: A meta-analysis. Lancet Neurol. 2005, 4, 362–365pl_PL
dc.referencesEngin, K.N.; Engin, G.; Kucuksahin, H.; Oncu, M.; Engin, G.; Guvener, B. Clinical evaluation of the neuroprotective effect of alpha-tocopherol against glaucomatous damage. Eur. J. Ophthalmol. 2007, 17, 528–533pl_PL
dc.referencesBenzie, F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antoxidant activity of biological fluids and modified version for simultaneous measurements of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–23pl_PL
dc.referencesCawthon, R.M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucl. Acids Res. 2009, 37, e21pl_PL

Files in this item


This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska