dc.contributor.author | Ranoszek-Soliwoda, Katarzyna | |
dc.contributor.author | Girleanu, Maria | |
dc.contributor.author | Tkacz-Szczesna, Beata | |
dc.contributor.author | Rosowski, Marcin | |
dc.contributor.author | Celichowski, Grzegorz | |
dc.contributor.author | Brinkmann, Martin | |
dc.contributor.author | Ersen, Ovidiu | |
dc.contributor.author | Grobelny, Jaroslaw | |
dc.date.accessioned | 2018-06-29T06:34:03Z | |
dc.date.available | 2018-06-29T06:34:03Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Katarzyna Ranoszek-Soliwoda, Maria Girleanu, Beata Tkacz-Szczęsna, et al., “Versatile Phase Transfer Method for the Efficient Surface Functionalization of Gold Nanoparticles: Towards Controlled Nanoparticle Dispersion in a Polymer Matrix,” Journal of Nanomaterials, vol. 2016, Article ID 9058323, 10 pages, 2016. https://doi.org/10.1155/2016/9058323. | pl_PL |
dc.identifier.issn | 1687-4110 | |
dc.identifier.other | ID 9058323 | |
dc.identifier.uri | http://hdl.handle.net/11089/25214 | |
dc.description.abstract | In electronic devices based on hybrid materials such as nonvolatile memory elements (NVMEs), it is essential to control precisely the dispersion of metallic nanoparticles (NPs) in an insulating polymer matrix such as polystyrene in order to control the functionality of the device. In this work the incorporation of AuNPs in polystyrene films is controlled by tuning the surface functionalization of the metallic nanoparticles via ligand exchange. Two ligands with different structures were used for functionalization: 1-decanethiol and thiol-terminated polystyrene. This paper presents a versatile method for the modification of gold nanoparticles (AuNPs) with thiol-terminated polystyrene ligands via phase transfer process. An organic colloid of AuNPs (5±1 nm diameter) is obtained by the phase transfer process (from water to toluene) that allows exchanging the ligand adsorbed on AuNPs surface (hydrophilic citrate/tannic acid to hydrophobic thiols). The stability, size distribution, and precise location of modified AuNPs in the polymer matrix are obtained from UV-Vis spectroscopy, dynamic light scattering (DLS), and electron tomography. TEM tomographic 3D imaging demonstrates that the modification of AuNPs with thiol-terminated polystyrene results in homogeneous particle distribution in the polystyrene matrix compared to 1-decanethiol modified AuNPs for which a vertical phase separation with a homogeneous layer of AuNPs located at the bottom of the polymer matrix was observed. | pl_PL |
dc.description.sponsorship | This work was supported by FP7-NMP-2010-SMALL-4 Program
(“Hybrid Organic/Inorganic Memory Elements for
Integration of Electronic and Photonic Circuitry,” HYMEC),
Project no. 263073. Eric Gonthier is acknowledged for technical
support in the preparation of hybrid thin films. Scientific
work was supported by the Polish Ministry of Science and
Higher Education Funds for Science in 2011–2014 allocated
for the cofunded international project. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Hindawi Publishing Corporation | pl_PL |
dc.relation.ispartofseries | Journal of Nanomaterials;2016 | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.subject | technology | pl_PL |
dc.title | Versatile Phase Transfer Method for the Efficient Surface Functionalization of Gold Nanoparticles: Towards Controlled Nanoparticle Dispersion in a Polymer Matrix | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | Copyright © 2016 Katarzyna Ranoszek-Soliwoda et al. | pl_PL |
dc.page.number | 1-10 | pl_PL |
dc.contributor.authorAffiliation | Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | 2 Institut Charles Sadron, UPR-22 CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France; Institut de Physique et Chimie des Materiaux de Strasbourg, UMR 7504 CNRS-UdS, 23 rue du Loess BP 43, ´ 67034 Strasbourg Cedex 2, France | pl_PL |
dc.contributor.authorAffiliation | Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Institut Charles Sadron, UPR-22 CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France | pl_PL |
dc.contributor.authorAffiliation | Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-UdS, 23 rue du Loess BP 43, 67034 Strasbourg Cedex 2, France | pl_PL |
dc.contributor.authorAffiliation | Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland | pl_PL |
dc.identifier.eissn | 1687-4129 | |
dc.references | E. C. Wang and A. Z. Wang, “Nanoparticles and their applications in cell and molecular biology,” Integrative Biology, vol. 6, no. 1, pp. 9–26, 2014. | pl_PL |
dc.references | S. Karve, M. E. Werner, R. Sukumar et al., “Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 21, pp. 8230–8235, 2012. | pl_PL |
dc.references | K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chemical Reviews, vol. 112, no. 5, pp. 2739–2779, 2012. | pl_PL |
dc.references | J.-M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science, vol. 301, no. 5641, pp. 1884–1886, 2003. | pl_PL |
dc.references | H. D. Hill and C. A. Mirkin, “The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange,” Nature Protocols, vol. 1, no. 1, pp. 324–336, 2006. | pl_PL |
dc.references | S. Schauermann, N. Nilius, S. Shaikhutdinov, and H.-J. Freund, “Nanoparticles for heterogeneous catalysis: new mechanistic insights,” Accounts of Chemical Research, vol. 46, no. 8, pp. 1673–1681, 2013. | pl_PL |
dc.references | E. Gross, J. H.-C. Liu, F. D. Toste, and G. A. Somorjai, “Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time,” Nature Chemistry, vol. 4, no. 11, pp. 947–952, 2012. | pl_PL |
dc.references | I. Piwoński and K. Soliwoda, “The effect of ceramic nanoparticles on tribological properties of alumina sol-gel thin coatings,” Ceramics International, vol. 36, no. 1, pp. 47–54, 2010. | pl_PL |
dc.references | I. Piwoński, K. Soliwoda, A. Kisielewska, R. Stanecka-Badura, and K. Kądzioła, “The effect of the surface nanostructure and composition on the antiwear properties of zirconia-titania coatings,” Ceramics International, vol. 39, no. 2, pp. 1111–1123, 2013. | pl_PL |
dc.references | G. Casula, P. Cosseddu, Y. Busby et al., “Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites,” Organic Electronics: Physics, Materials, Applications, vol. 18, pp. 17–23, 2015. | pl_PL |
dc.references | L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles,” Advanced Functional Materials, vol. 15, no. 12, pp. 1933–1939, 2005. | pl_PL |
dc.references | J. C. Scott and L. D. Bozano, “Nonvolatile memory elements based on organic materials,” Advanced Materials, vol. 19, no. 11, pp. 1452–1463, 2007. | pl_PL |
dc.references | Y. N. C. Chan, G. S. W. Craig, R. R. Schrock, and R. E. Cohen, “Synthesis of palladium and platinum nanoclusters within microphase-separated diblock copolymers,” Chemistry of Materials, vol. 4, no. 4, pp. 885–894, 1992. | pl_PL |
dc.references | R. Saito, S.-I. Okamura, and K. Ishizu, “Introduction of colloidal silver into a poly(2-vinyl pyridine) microdomain of microphase separated poly(styrene-b-2-vinyl pyridine) film,” Polymer, vol. 33, no. 5, pp. 1099–1101, 1992. | pl_PL |
dc.references | B. Hamdoun, D. Ausserré, S. Joly, Y. Gallot, V. Cabuil, and C. Clinard, “New nanocomposite materials,” Journal de Physique II, vol. 6, no. 4, pp. 493–501, 1996. | pl_PL |
dc.references | V. Lauter-Pasyuk, H. J. Lauter, D. Ausserre et al., “Effect of nanoparticle size on the internal structure of copolymer-nanoparticles composite thin films studied by neutron reflection,” Physica B: Condensed Matter, vol. 241-243, pp. 1092–1094, 1997. | pl_PL |
dc.references | B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” Journal of the American Chemical Society, vol. 124, no. 51, pp. 15146–15147, 2002. | pl_PL |
dc.references | M. Higuchi, K. Ushiba, and M. Kawaguchi, “Structural control of peptide-coated gold nanoparticle assemblies by the conformational transition of surface peptides,” Journal of Colloid and Interface Science, vol. 308, no. 2, pp. 356–363, 2007. | pl_PL |
dc.references | C.-A. Fustin, C. Colard, M. Filali et al., “Tuning the hydrophilicity of gold nanoparticles templated in star block copolymers,” Langmuir, vol. 22, no. 15, pp. 6690–6695, 2006. | pl_PL |
dc.references | D. Li, Q. He, and J. Li, “Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles,” Advances in Colloid and Interface Science, vol. 149, no. 1-2, pp. 28–38, 2009. | pl_PL |
dc.references | J. Raula, J. Shan, M. Nuopponen et al., “Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization,” Langmuir, vol. 19, no. 8, pp. 3499–3504, 2003. | pl_PL |
dc.references | D. Li, Q. He, Y. Cui, K. Wang, X. Zhang, and J. Li, “Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment,” Chemistry—A European Journal, vol. 13, no. 8, pp. 2224–2229, 2007. | pl_PL |
dc.references | M. K. Corbierre, N. S. Cameron, and R. B. Lennox, “Polymer-stabilized gold nanoparticles with high grafting densities,” Langmuir, vol. 20, no. 7, pp. 2867–2873, 2004. | pl_PL |
dc.references | A. B. Lowe, B. S. Sumerlin, M. S. Donovan, and C. L. McCormick, “Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization,” Journal of the American Chemical Society, vol. 124, no. 39, pp. 11562–11563, 2002. | pl_PL |
dc.references | S. Mössmer, J. P. Spatz, M. Möller, T. Aberle, J. Schmidt, and W. Burchard, “Solution behavior of poly(styrene)-block-poly(2-vinylpyridine) micelles containing gold nanoparticles,” Macromolecules, vol. 33, no. 13, pp. 4791–4798, 2000. | pl_PL |
dc.references | J. Q. Lu and S. S. Yi, “Uniformly sized gold nanoparticles derived from PS-b-P2VP block copolymer templates for the controllable synthesis of Si nanowires,” Langmuir, vol. 22, no. 9, pp. 3951–3954, 2006. | pl_PL |
dc.references | D. Li, Ch. Li, A. Wang, Q. He, and J. Li, “Hierarchical gold/copolymer nanostructures as hydrophobic nanotanks for drug encapsulation,” Journal of Materials Chemistry, vol. 20, no. 36, pp. 7782–7787, 2010. | pl_PL |
dc.references | G. Yang, W.-S. Chang, and D. T. Hallinan Jr., “A convenient phase transfer protocol to functionalize gold nanoparticles with short alkylamine ligands,” Journal of Colloid and Interface Science, vol. 460, pp. 164–172, 2015. | pl_PL |
dc.references | B. Tkacz-Szczesna, K. Soliwoda, M. Rosowski, E. Tomaszewska, G. Celichowski, and J. Grobelny, “Modification of gold and silver nanoparticles with n-dialkyldithiophosphates,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 468, pp. 219–225, 2015. | pl_PL |
dc.references | K. Soliwoda, E. Tomaszewska, B. Tkacz-Szczesna, M. Rosowski, G. Celichowski, and J. Grobelny, “The influence of the chain length and the functional group steric accessibility of thiols on the phase transfer efficiency of gold nanoparticles from water to toluene,” Polish Journal of Chemical Technology, vol. 16, no. 1, pp. 86–91, 2014. | pl_PL |
dc.references | K. Soliwoda, E. Tomaszewska, B. Tkacz-Szczesna et al., “Effect of the alkyl chain length of secondary amines on the phase transfer of gold nanoparticles from water to toluene,” Langmuir, vol. 30, no. 23, pp. 6684–6693, 2014. | pl_PL |
dc.references | N. G. Bastús, F. Merkoçi, J. Piella, and V. Puntes, “Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties,” Chemistry of Materials, vol. 26, no. 9, pp. 2836–2846, 2014. | pl_PL |
dc.references | M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” Journal of the Chemical Society, Chemical Communications, no. 7, pp. 801–802, 1994. | pl_PL |
dc.references | S. R. K. Perala and S. Kumar, “On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method,” Langmuir, vol. 29, no. 31, pp. 9863–9873, 2013. | pl_PL |
dc.references | X. M. Lin, C. M. Sorensen, and K. J. Klabunde, “Digestive ripening, nanophase segregation and superlattice formation in gold nanocrystal colloids,” Journal of Nanoparticle Research, vol. 2, no. 2, pp. 157–164, 2000. | pl_PL |
dc.references | R. Shankar, B. B. Wu, and T. P. Bigioni, “Wet chemical synthesis of monodisperse colloidal silver nanocrystals using digestive ripening,” Journal of Physical Chemistry C, vol. 114, no. 38, pp. 15916–15923, 2010. | pl_PL |
dc.references | M. K. Corbierre, N. S. Cameron, M. Sutton et al., “Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices,” Journal of the American Chemical Society, vol. 123, no. 42, pp. 10411–10412, 2001. | pl_PL |
dc.references | M. K. Corbierre, N. S. Cameron, M. Sutton, K. Laaziri, and R. B. Lennox, “Gold nanoparticle/polymer nanocomposites: dispersion of nanoparticles as a function of capping agent molecular weight and grafting density,” Langmuir, vol. 21, no. 13, pp. 6063–6072, 2005. | pl_PL |
dc.references | J. M. Stouffer and T. J. McCarthy, “Polymer monolayers prepared by the spontaneous adsorption of sulfur-functionalized polystyrene on gold surfaces,” Macromolecules, vol. 21, no. 5, pp. 1204–1208, 1988. | pl_PL |
dc.references | H. Dohi, H. Kimura, M. Kotani et al., “Three-dimensional imaging in polymer science: its application to block copolymer morphologies and rubber composites,” Polymer Journal, vol. 39, no. 8, pp. 749–758, 2007. | pl_PL |
dc.references | H. Jinnai, R. J. Spontak, and T. Nishi, “Transmission electron microtomography and polymer nanostructures,” Macromolecules, vol. 43, no. 4, pp. 1675–1688, 2010. | pl_PL |
dc.references | F. Dalmas, N. Genevaz, M. Roth, J. Jestin, and E. Leroy, “3D dispersion of spherical silica nanoparticles in polymer nanocomposites: a quantitative study by electron tomography,” Macromolecules, vol. 47, no. 6, pp. 2044–2051, 2014. | pl_PL |
dc.references | S. Akasaka, H. Mori, T. Osaka, V. H. Mareau, and H. Hasegawa, “Controlled introduction of metal nanoparticles into a microdom structure,” Macromolecules, vol. 42, no. 4, pp. 1194–1202, 2009. | pl_PL |
dc.references | M. K. Mayeda, W.-F. Kuan, W.-S. Young, J. A. Lauterbach, and T. H. Epps III, “Controlling particle location with mixed surface functionalities in block copolymer thin films,” Chemistry of Materials, vol. 24, no. 14, pp. 2627–2634, 2012. | pl_PL |
dc.references | M. Fu, A. Wang, X. Zhang, L. Dai, and J. Li, “Direct observation of the distribution of gelatin in calcium carbonate crystals by super-resolution fluorescence microscopy,” Angewandte Chemie—International Edition, vol. 55, no. 3, pp. 908–911, 2016. | pl_PL |
dc.references | A. I. Frenkel, S. Nemzer, I. Pister et al., “Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles,” Journal of Chemical Physics, vol. 123, no. 18, Article ID 184701, 2005. | pl_PL |
dc.references | J. R. Kremer, D. N. Mastronarde, and J. R. McIntosh, “Computer visualization of three-dimensional image data using IMOD,” Journal of Structural Biology, vol. 116, no. 1, pp. 71–76, 1996. | pl_PL |
dc.references | C. MessaoudiI, T. Boudier, C. O. S. Sorzano, and S. Marco, “TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy,” BMC Bioinformatics, vol. 8, article 288, 2007. | pl_PL |
dc.references | T. Sakura and Y. Nagasaki, “Preparation of gold colloid using pyrrole-2-carboxylic acid and characterization of its particle growth,” Colloid and Polymer Science, vol. 285, no. 12, pp. 1407–1410, 2007. | pl_PL |
dc.contributor.authorEmail | jgrobel@uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1155/2016/9058323 | |