Show simple item record

dc.contributor.authorVorobel, Roman
dc.date.accessioned2021-08-23T09:58:03Z
dc.date.available2021-08-23T09:58:03Z
dc.date.issued2018
dc.identifier.issn0459-6854
dc.identifier.urihttp://hdl.handle.net/11089/38706
dc.description.abstractArchimedean triangular operators form the basis of the tools for development, analysis and designing of fuzzy systems. They are generated by simple, monotone, single-valued and continuous functions. The basic sets of logical connectives of fuzzy systems are analyzed. It is shown that they are divided into conditional and algebraic ones. The well-known methods for generating of Archimedean triangular operators are described. Limitation of the functional characteristics of such generated operators is shown. To expand them, a method for generating has been created, which makes it possible to build new parameterized operators. Examples of constructing both new operators and those that generalize the already known ones are given. The tendency of the change of the characteristic hyper surface, which is build by new operator, is revealed.pl_PL
dc.language.isoenpl_PL
dc.publisherŁódzkie Towarzystwo Naukowepl_PL
dc.relation.ispartofseriesBulletin de la Société des Sciences et des lettres de Łódź, Série: Recherches sur les déformations;68
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectT-normspl_PL
dc.subjectS-normspl_PL
dc.subjectT-operatorspl_PL
dc.subjectconnective generatorspl_PL
dc.titleMethod for Generating of Archimedean Triangular Connective Operatorspl_PL
dc.typeArticlepl_PL
dc.page.number59-70pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanejpl_PL
dc.referencesL. A. Zadeh, Fuzzy sets, Inform. Contr. 8 (1965), 338–353.pl_PL
dc.referencesH. T. Nguen, E. A. Walker, A first course in fuzzy logic, Chapmen & Hall/CRC, Roca Raton, 2006.pl_PL
dc.referencesC. E. Alsina, E. Trillas, L. Valverde, On some logical connectives for fuzzy theory, J. Math. Anal. Appl. 93 (1983), 15–22.pl_PL
dc.referencesJ. Dombi, A general class of fuzzy operators, the De-Morgan class of fuzzy operators and fuzziness induced by fuzzy operators, Fuzzy Sets and Systems 8 (1982) 149–163.pl_PL
dc.referencesG. A. Klir, T. A. Folger, Fuzzy sets, uncertainty and information, Prentice-Hall, Englewood Cliffs, NJ, 1988.pl_PL
dc.referencesD. Dubois, H. Prade, New results about properties and semantics of fuzzy settheoretic operators, in: Fuzzy Sets, Wang and Chang, Eds. New York: Plenum Press, 1980, 59–75.pl_PL
dc.referencesS. Roychowdhury, B. H. Wang, Composite generalization of Dombi class and a new family of T-operators using additive-product connective generator, Fuzzy Sets Syst. 66 (1994), 329–346.pl_PL
dc.referencesK. Menger, Statistical metric spaces, Proc. Nat. Acad. Sci. 28, (1942), 535–537.pl_PL
dc.referencesG. A. Klir, B. Yang. Fuzzy sets and fuzzy logic, Prentice-Hall, New Jersy, 1995pl_PL
dc.referencesB. Schweizer, A. Sklar A., Associative functions and abstract semi groups, Publicationes Mathematicae Debrecen 40 (1963), 69–81.pl_PL
dc.referencesC. Alsina, M. J. Frank, B. Schweizer. Associative functions: triangular norms and copulas. Hackensack, World Scientific, 2006.pl_PL
dc.referencesE. P. Klement,R. Mesia,E. Pap. Triangular norms. Kluwer Academic Publishers. Dordrecht- Boston-Londod. 2000.pl_PL
dc.referencesR. R. Yager, On a general class of fuzzy connectives, Fuzzy Sets Syst. 4 (1980), 235–242.pl_PL
dc.referencesJ. C. Fodor, Contrapositive symmetry of fuzzy implications, Fuzzy Sets Syst. 69 (1995), 141-156.pl_PL
dc.referencesD. Dubois, H. Prade, A review of fuzzy set aggregation connectivies, Inform.Sci. 36, 85–121.pl_PL
dc.referencesH. Hamacher, Uber logische verknunpfungenn unssharfer Aussagen und deren Zugenhorige Bewertungsfunktione, in: Progress in Cybernatics and Systems Research, Trappl, Klir, Riccardi, Eds. Washington, DC: Hemisphere, 3 (1978), 276–288.pl_PL
dc.referencesM. J. Frank, On simulataneous associativity of F(x, y) and x + y - F(x, y), Aequationes Math. 19 (1979), 194–226.pl_PL
dc.referencesJ. Aczel, Lectures on Functional Equations and Their Applications. New York: Academic, 1966pl_PL
dc.referencesR. A. Vorobel, Additive-multiplicative generator of logical connectives in fuzzy systems, Information Extraction and Proces. 45 (121), (2017), 63–68.pl_PL
dc.referencesR. Vorobel, Methods of triangular norms construction, in: Proceedings of the Int. Sci. Conf. Modern Problems of Mathematical Modeling, Computational Methods and Information Technologies, 2 -4 March, 2018, Rivne, Ukraine, 151-163.pl_PL
dc.referencesR. A. Vorobel. Logarithmic image processing, Kyiv: Naukova Dumka, 2012.pl_PL
dc.identifier.doi10.26485/0459-6854/2018/68.3/5
dc.relation.volume3pl_PL
dc.disciplinenauki fizycznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe