Pokaż uproszczony rekord

dc.contributor.authorBorowczyk, Kamila
dc.contributor.authorOlejarz, Patrycja
dc.contributor.authorChwatko, Grażyna
dc.contributor.authorSzylberg, Marcin
dc.contributor.authorGłowacki, Rafał
dc.date.accessioned2021-09-09T07:12:25Z
dc.date.available2021-09-09T07:12:25Z
dc.date.issued2020
dc.identifier.citationBorowczyk K, Olejarz P, Chwatko G, Szylberg M, Głowacki R. A Simplified Method for Simultaneous Determination of α-Lipoic Acid and Low-Molecular-Mass Thiols in Human Plasma. International Journal of Molecular Sciences. 2020; 21(3):1049. https://doi.org/10.3390/ijms21031049pl_PL
dc.identifier.issn1422-0067
dc.identifier.urihttp://hdl.handle.net/11089/39006
dc.description.abstractα-Lipoic acid, glutathione, cysteine, and cysteinylglycine can be applied as therapeutic agents in civilization diseases such as diabetes mellitus, cardiovascular diseases, and cancers. On the other hand, a higher concentration of homocysteine can result in health problems and has been indicated as an independent risk factor for cardiovascular disease and accelerated atherosclerosis. Here, the first simplified HPLC-UV assay that enables simultaneous determination of α-lipoic acid and low-molecular-mass thiols in plasma, reduces the number of steps, shortens the total time of sample preparation, and limits the amount of single-use polypropylene laboratory materials is described. The assay is based on reversed-phase high performance liquid chromatography with UV detection and simultaneous reduction of disulfide bound with tris(2-carboxyethyl)phosphine and the selective pre-column derivatization of the thiol group with 1-benzyl-2-chloropyridinium bromide. Linearity in the detector responses for plasma samples were observed in ranges: 0.12–5.0 nmol mL−1 for α-lipoic acid; 2.0–20.0 nmol mL−1 for glutathione, cysteinylglycine, and homocysteine; and 40.0–400.0 for cysteine. The LODs for α-lipoic acid and low-molecular-mass thiols were 0.08 and 0.12 nmol mL−1 , respectively, while LOQs were 0.12 and 0.16 nmol mL−1 , respectively. The usefulness of the proposed method has been proven by its application to real samples.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesInternational Journal of Molecular Sciences;21
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectα-lipoic acidpl_PL
dc.subjectlow-molecular-mass thiolspl_PL
dc.subjectsimultaneous reduction and derivatizationpl_PL
dc.subjecthigh performance liquid chromatographypl_PL
dc.subjectultraviolet detectionpl_PL
dc.titleA Simplified Method for Simultaneous Determination of α-Lipoic Acid and Low-Molecular-Mass Thiols in Human Plasmapl_PL
dc.typeArticlepl_PL
dc.page.number15pl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationRehabilitation Center “Kraszewski”, Kraszewskiego 7/9, 93-161 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Łódź, Polandpl_PL
dc.referencesRahimlou, M.; Asadi, M.; Jahromi, N.B.; Mansoori, A. Alpha-lipoic acid (ALA) supplementation effect on glycemic and inflammatory biomarkers: A Systematic Review and meta-analysis. Clin. Nutr. ESPEN. 2019, 32, 16–28.pl_PL
dc.referencesFarhata, D.; Linceta, H. Lipoic acid a multi-level molecular inhibitor of tumorigenesis. BBA Rev. Cancer. 2020, 1873, 188317.pl_PL
dc.referencesGorąca, A.; Huk-Kolega, H.; Piechota, A.; Kleniewska, P.; Ciejka, E.; Skibska, B. Lipoic acid—biological activity and therapeutic potential. Pharmacol. Rep. 2011, 63, 849–858.pl_PL
dc.referencesGor ˛aca, A.; Huk-Kolega, H.; Piechota, A.; Kleniewska, P.; Ciejka, E.; Skibska, B. Lipoic acid—biological activity and therapeutic potential. Pharmacol. Rep. 2011, 63, 849–858.pl_PL
dc.referencesGolbidi, S.; Badranand, M.; Laher, I. Diabetes and alpha lipoic acid. Front. Pharmacol. 2011, 2, 69.pl_PL
dc.referencesWollin, S.D.; Jones, P.J. a-Lipoic acid and cardiovascular disease. J. Nutr. 2003, 133, 3327–3330.pl_PL
dc.referencesFeuerecker, B.; Pirsig, S.; Seidl, C.; Aichler, M.; Feuchtinger, A.; Bruchelt, G.; Senekowitsch-Schmidtke, R. Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivo. Cancer Biol. Ther. 2012, 13, 1425–1435.pl_PL
dc.referencesWaslo, C.; Bourdette, D.; Gray, N.; Wright, K.; Spain, R. Lipoic acid and other antioxidants as therapies for multiple sclerosis. Curr. Treat. Options Neurol. 2019, 21, 26.pl_PL
dc.referencesLiu, W.; Shi, L.; Li, S. The immunomodulatory effect of alpha-lipoic acid in autoimmune diseases. BioMed Res. Int. 2019, 8086257.pl_PL
dc.referencesHernández-Rabaza, V.; López-Pedrajas, R.; Almansa, I. Progesterone, lipoic acid, and sulforaphane as promising antioxidants for retinal diseases: A review. Antioxidants 2019, 8, 53.pl_PL
dc.referencesPocernich, C.B.; Butterfield, D.A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Bioch. Biophys. Acta. 2012, 1822, 625–630.pl_PL
dc.referencesLiu, R.; Choi, J. Age-associated decline in gamma-glutamylcysteine synthetase gene expression in rats. Free Radic. Biol. Med. 2000, 28, 566–574.pl_PL
dc.referencesTsugawa, S.; Noda, Y.; Tarumi, R.; Mimura, Y.; Yoshida, K.; Iwata, Y.; Elsalhy, M.; Kuromiya, M.; Kurose, S.; Masuda, F.; et al. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J. Psychopharm. 2019, 33, 1199–1214.pl_PL
dc.referencesZmorzyński, S.; Świderska-Kołacz, G.; Koczkodaj, D.; Filip, A.A. Significance of polymorphisms and expression of enzyme-encoding genes related to glutathione in hematopoietic cancers and solid tumors. Biomed. Res. Int. 2015, 2015, 1–6.pl_PL
dc.referencesLu, S.C. Glutathione synthesis. Biochim. Biophys. Acta. 2014, 1830, 3143–3153.pl_PL
dc.referencesCorso, C.R.; Acco, A. Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Crit. Rev. Oncol. Hematol. 2018, 128, 43–57.pl_PL
dc.referencesJakubowski, H. Homocysteine is a protein amino acid in humans. J. Biol. Chem. 2002, 277, 30425–30428.pl_PL
dc.referencesJakubowski, H. Homocysteine modification in protein structure/function and human disease. Physiol. Rev. 2019, 99, 555–604.pl_PL
dc.referencesSaeed, S.; Faramarz, F.; Mojtaba, S.; Davoodi, G.; Mahmoodian, M.; Fallah, N.; Darvish, S.; Karimi, A. Tehran Heart Center. Homocysteine, vitamin B12 and folate levels in premature coronary artery disease. BMC Cardiovasc. Disord. 2006, 6, 38.pl_PL
dc.referencesWang, H.; Jiang, X.; Yang, F.; Gaubatz, J.W.; Ma, L.; Magera, M.J.; Yang, X.F.; Berger, P.B.; Durante, W.; Pownall, H.J.; et al. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood 2003, 101, 3901–3907.pl_PL
dc.referencesDong, X.; Yao, Z.; Hu, Y.; Yang, N.; Gao, X.; Xu, Y.; Wang, G. Potential harmful correlation between homocysteine and low-density lipoprotein cholesterol in patients with hypothyroidism. Medicine 2016, 95, e4291.pl_PL
dc.referencesChwatko, G.; Krawczyk, M.; Iciek, M.; Kamińska, A.; Bilska-Wilkosz, A.; Marcykiewicz, B.; Głowacki, R. Determination of lipoic acid in human plasma by high-performance liquid chromatography with ultraviolet detection. Arab. J. Chem. 2019, 12, 4878–4886.pl_PL
dc.referencesWitt, W.; Rustow, B. Determination of lipoic acid by precolumn derivatization with monobromobimane and reversed-phase high-performance liquid chromatography. J. Chromatogr. B 1998, 705, 127–131.pl_PL
dc.referencesSatoh, S.; Toyo’oka, T.; Fukushima, T.; Inagaki, S. Simultaneous determination of α-lipoic acid and its reduced form by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B. 2007, 854, 109–115.pl_PL
dc.referencesBorowczyk, K.; Olejarz, P.; Chwatko, G. Application of simultaneous separation and derivatization for the determination of α-lipoic acid in urine samples by high-performance liquid chromatography with spectrofluorimetric detection. Biomed. Chromatogr. 2019, 33, e4576.pl_PL
dc.referencesKhan, A.; Iqbal, Z.; Watson, D.G.; Khan, A.; Khan, I.; Muhammad, N.; Muhammad, S.; Nasib, H.A.; Iqbal, N.; Faiz-ur-rehman Kashif, M. Simultaneous determination of lipoic acid (LA) and dihydrolipoic acid (DHLA) in human plasma using high performance liquid chromatography coupled with electrochemical detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 1725–1731.pl_PL
dc.referencesKhan, M.I.; Iqbal, Z.; Ahmad, L. Simultaneous determination of the endogenous free a-lipoic acid and dihydrolipoic acid in human plasma and erythrocytes by RP-HPLC with electrochemical detection. Chromatographia 2011, 73, 929–939.pl_PL
dc.referencesMontero, O.; Ramırez, M.; Sanchez-Guijo, A.; Gonzalez, C. Determination of lipoic acid, Trolox methyl ether and tocopherols in human plasma by liquid-chromatography and ion-trap tandem mass spectrometry. Biomed. Chromatogr. 2012, 26, 1228–1233.pl_PL
dc.referencesKuśmierek, K.; Chwatko, G.; Głowacki, R.; Kubalczyk, P.; Bald, E. Ultraviolet derivatization of low-molecular-mass thiols for high performance liquid chromatography and capillary electrophoresis analysis. J. Chromatogr. B. 2011, 879, 1290–1307.pl_PL
dc.referencesBorowczyk, K.; Krawczyk, M.; Kubalczyk, P.; Chwatko, G. Determination of lipoic acid in biological samples. Bioanalysis 2015, 7, 1785–1798.pl_PL
dc.referencesBorowczyk, K.; Wyszczelska-Rokiel, M.; Kubalczyk, P.; Głowacki, R. Simultaneous determination of albumin and low-molecular-mass thiols in plasma by HPLC with UV detection. J. Chromatogr. B. 2015, 981, 57–64.pl_PL
dc.referencesKuśmierek, K.; Bald, E. Reversed-phase liquid chromatography method for the determination of total plasma thiols after derivatization with 1-benzyl-2-chloropyridinium bromide. Biomed. Chromatogr. 2009, 23, 770–775.pl_PL
dc.referencesGłowacki, R.; Bald, E.; Jakubowski, H. Identification and origin of Nε-homocysteinyl-lysine isopeptide in humans and mice. Amino Acids. 2010, 39, 1563–1569.pl_PL
dc.referencesKuśmierek, K.; Chwatko, G.; Głowacki, R.; Bald, E. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 3300–3308.pl_PL
dc.referencesKamińska, A.; Głowacka, I.E.; Pasternak, B.; Głowacki, R.; Chwatko, G. The first method for determination of lipoyllysine in human urine after oral lipoic acid supplementation. Bioanalysis 2019, 11, 1359–1373.pl_PL
dc.referencesChwatko, G.; Kubalczyk, P.; Bald, E. Determination of lipoic acid in the form of 2-S-pyridinium derivative by high-performance liquid chromatography with ultraviolet detection. Curr. Org. Chem. 2014, 10, 320–325.pl_PL
dc.referencesAtukeren, P.; Aydin, S.; Uslu, E.; Gumustas, M.K.; Cakatay, U. Redox homeostasis of albumin in relation to alpha-lipoic acid and dihydrolipoic acid. Oxidat. Med. Cell. Longev. 2010, 3, 206–213.pl_PL
dc.referencesKawakami, A.; Kubota, K.; Yamada, N.; Tagami, U.; Takehana, K.; Sonaka, I.; Suzuki, E.; Hirayama, K. Identification and characterization of oxidized human serum albumin. A slight structural change impairs its ligand-binding and antioxidant functions. FEBS J. 2006, 273, 3346–3357.pl_PL
dc.referencesChng, H.T.; New, L.S.; Neo, A.H.; Goh, C.W.; Browne, E.R.; Chan, E.C.Y. A sensitive LC/MS/MS bioanalysis assay of orally administered lipoic acid in rat blood and brain tissue. J. Pharm. Biomed. Anal. 2010, 51, 754–757.pl_PL
dc.referencesKhan, A.; Khan, M.I.; Iqbal, Z.; Ahmad, L.; Shah, Y.; Watson, D.G. Determination of lipoic acid in human plasma by HPLC ECD using liquid–liquid and solid-phase extraction: Method development, validation and optimization of experimental parameters. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 2782–2788.pl_PL
dc.referencesBald, E.; Chwatko, G.; Głowacki, R.; Kuśmierek, K. Analysis of plasma thiols by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. A. 2004, 1032, 109–115.pl_PL
dc.referencesGłowacki, R.; Bald, E. Fully automated method for simultaneous determination of total cysteine, cysteinylglycine, glutathione and homocysteine in plasma by HPLC with UV absorbance detection. J. Chromatogr. B 2009, 877, 3400–3404.pl_PL
dc.referencesFDA. Guidance for Industry Bioanalytical Method Validation. Available online: http://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf (accessed on 6 March 2019).pl_PL
dc.referencesEuropean Medicines Agency (EMA); Committee for Medicinal Products for Human Use (CHMP). Guideline on Bioanalytical Method Validation. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 13 May 2019).pl_PL
dc.referencesBald, E.; Sypniewski, S.; Drzewoski, J.; Stępień, M. Application of 2-halopyridinium salts as ultraviolet derivatization reagents and solid-phase extraction for determination of captopril in human plasma by high-performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1996, 681, 283–289.pl_PL
dc.referencesBorowczyk, K.; Olejarz, P.; Kamińska, A.; Głowacki, R.; Chwatko, G. Application of butylamine as a conjugative reagent to on-column derivatization for the determination of antioxidant amino acids in brain tissue, plasma, and urine samples. Int. J. Mol. Sci. 2019, 20, 3340.pl_PL
dc.identifier.doihttps://doi.org/10.3390/ijms21031049
dc.disciplinenauki chemicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe