dc.contributor.author | Chęcińska, Lilianna | |
dc.contributor.author | Abendrot, Michał | |
dc.contributor.author | Kusz, Joachim | |
dc.contributor.author | Lisowska, Katarzyna | |
dc.contributor.author | Zawadzka, Katarzyna | |
dc.contributor.author | Felczak, Aleksandra | |
dc.contributor.author | Kalinowska-Lis, Urszula | |
dc.date.accessioned | 2021-09-10T08:59:14Z | |
dc.date.available | 2021-09-10T08:59:14Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Abendrot, M.; Chęcińska, L.; Kusz, J.; Lisowska, K.; Zawadzka, K.; Felczak, A.; Kalinowska-Lis, U. Zinc(II) Complexes with Amino Acids for Potential Use in Dermatology: Synthesis, Crystal Structures, and Antibacterial Activity. Molecules 2020, 25, 951. https://doi.org/10.3390/molecules25040951 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11089/39020 | |
dc.description.abstract | The multifunctional profile of Zn2+ has influenced its great popularity in various
pharmaceutical, food, and cosmetic products. Despite the use of different inorganic and organic zinc
derivatives, the search for new zinc-containing compounds with a safer skin profile still remains an
open issue. The present paper describes the synthesis, structural characterization, and antibacterial
activity of zinc(II) complexes with proteinogenic amino acids as potential candidates for dermatological
treatments. The obtained complexes are of the general formula [Zn(AA)2], where AA represents
an amino acid (L-Glu, Gly, L-His, L-Pro, L-Met, and L-Trp). Their synthesis was designed in
such a way that the final bis(aminoacidate) zinc(II) complexes did not contain any counter-ions
such as Cl−, NO3
−, or SO4
2− that can cause some skin irritations. The chemical structure and
composition of the compounds were identified by 1H NMR spectroscopy and elemental analysis,
and four were also characterized by single-crystal X-ray diffraction. The Hirshfeld surface analysis
for the Zn2+ metallic center helped to determine its coordination number and geometry for each
complex. Finally, the antibacterial properties of the complexes were determined with respect to
three Gram-positive strains, viz. Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC
12228, and Streptococcus pyogenes ATCC 19615, and two Gram-negative bacteria, viz. Escherichia
coli ATCC 25992 and Pseudomonas aeruginosa ATCC 27853, and were compared with the activity of
zinc 2-pirrolidone 5-carboxylate (ZnPCA), commonly applied in dermatology. It was found that
the Zn(II) complexes with methionine and glycine exhibited a higher antibacterial activity than the
tested standard, and the antimicrobial properties of complex with Trp were satisfactory. The results of
the antimicrobial activity examination allow us to postulate that the obtained zinc complexes might
become new active substances for use in dermatological products. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Molecules;25, 951 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | zinc(II) complexes | pl_PL |
dc.subject | proteinogenic amino acids | pl_PL |
dc.subject | crystal structures | pl_PL |
dc.subject | antibacterial activity | pl_PL |
dc.subject | Hirshfeld surface analysis | pl_PL |
dc.title | Zinc(II) Complexes with Amino Acids for Potential Use in Dermatology: Synthesis, Crystal Structures, and Antibacterial Activity | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 17 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łód ´z, Poland; lilianna.checinska@chemia.uni.lodz.pl | pl_PL |
dc.contributor.authorAffiliation | Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszy ´nskiego 1, 90-151 Łód ´z, Poland | pl_PL |
dc.contributor.authorAffiliation | Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Łód ´z, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Łód ´z, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Łód ´z, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszy ´nskiego 1, 90-151 Łód ´z, Poland | pl_PL |
dc.identifier.eissn | 1420-3049 | |
dc.references | Abendrot, M.; Kalinowska-Lis, U. Zinc-containing compounds for personal care applications. Int. J. Cosmet. Sci. 2018, 40, 319–327. | pl_PL |
dc.references | Myari, A.; Malandrinos, G.; Deligiannakis, Y.; Plakatouras, J.C.; Hadjiliadis, N.; Nagy, Z.; Sóvágó, I. Interaction of Cu(2+) with His-Val-His and of Zn(2+) with His-Val-Gly-Asp, two peptides surrounding metal ions in Cu,Zn-superoxide dismutase enzyme. J. Inorg. Biochem. 2001, 85, 253–261. | pl_PL |
dc.references | Krishnamurthy, V.M.; Kaufman, G.K.; Urbach, A.R.; Gitlin, I.; Gudiksen, K.L.; Weibel, D.B.; Whitesides, G.M. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem. Rev. 2008, 108, 946–1051. | pl_PL |
dc.references | Kidambi, S.S.; Lee, D.K.; Ramamoorthy, A. Interaction of Cd and Zn with biologically important ligands characterized using solid-state NMR and ab initio calculations. Inorg. Chem. 2003, 42, 3142–3151. | pl_PL |
dc.references | Bagherani, N.; Smoller, B.R. An overview of zinc and its importance in dermatology-Part I: Importance and function of zinc in human beings. Glob. Dermatol. 2016, 3, 330–336. | pl_PL |
dc.references | Cassandri, M.; Smirnov, A.; Novelli, F.; Pitolli, C.; Agostini, M.; Malewicz, M.; Melino, G.; Raschellà, G. Zinc-finger proteins in health and disease. Cell Death Discov. 2017, 3, 17071. | pl_PL |
dc.references | Kr ˛a ˙zel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19. | pl_PL |
dc.references | Trzaskowski, B.; Adamowicz, L.; Deymier, P.A. A theoretical study of zinc(II) interactions with amino acid models and peptide fragments. J. Biol. Inorg. Chem. 2008, 13, 133–137. | pl_PL |
dc.references | Dudev, T.; Lim, C. Tetrahedral vs. Octahedral Zinc Complexes with Ligands of Biological Interest: A DFT/CDM Study. J. Am. Chem. Soc. 2000, 122, 11146–11153. | pl_PL |
dc.references | Deters, A.; Schnet, E.; Schmidt, M.; Hensel, A. Effects of zinc histidine and zinc sulfate on natural human keratinocytes. Forsch Komplem. 2003, 10, 19–25. | pl_PL |
dc.references | Schlegel, P.; Windisch, W. Bioavailability of zinc glycinate in comparison with zinc sulphate in the presence of dietary phytate in an animal model with 65Zn labelled rats. J. Anim. Physiol. Anim. Nutr. 2006, 90, 216–222. | pl_PL |
dc.references | Sobel, S.; Theophall, G. The Complexation of Aqueous Metal Ions Relevant to Biological Applications. 2. Evaluation of simultaneous equilibria of poorly soluble zinc salts with select amino acids. Chem. Speciat. Bioavailab. 2010, 22, 201–205. | pl_PL |
dc.references | Aquilina, G.; Bach, A.; Bampidis, V.; De Lourdes Bastos, M.; Flachowsky, G.; Gasa-Gasó, J.; Gralak, M.A.; Hogstrand, C.; Leng, L.; López-Puente, S.; et al. Scientific Opinion on the safety and efficacy of niacin (nicotinic acid and nicotinamide) as a feed additive for all animal species based on a dossier submitted by VITAC EEIG. EFSA J. 2013, 11, 3038. | pl_PL |
dc.references | Aguilar, F.; Autrup, H.; Barlow, S.; Castle, L.; Crebelli, R.; Dekant, W.; Engel, K.-H.; Gontard, N.; Gott, D.; Grilli, S.; et al. Opinion on certain bisglycinates as sources of copper, zinc, calcium, magnesium and glycinate nicotinate as source of chromium in foods intended for the general population (including food supplements) and foods for particular nutritional uses. EFSA J. 2008, 718, 1–26. | pl_PL |
dc.references | Chen, N.N.; Liu, B.; Xiong, P.W.; Guo, Y.; He, J.N.; Hou, C.C.; Ma, L.X.; Yu, D.Y. Safety evaluation of zinc methionine in laying hens: Effects on laying performance, clinical blood parameters, organ development, and histopathology. Poult. Sci. 2018, 97, 1120–1126. | pl_PL |
dc.references | Plum, L.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. | pl_PL |
dc.references | Kim, K.B.; Kim, Y.W.; Lim, S.K.; Roh, T.H.; Bang, D.Y.; Choi, S.M.; Lim, D.S.; Kim, Y.J.; Baek, S.H.; Kim, M.K.; et al. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. J. Toxicol. Environ. Health B Crit. Rev. 2017, 20, 155–182. | pl_PL |
dc.references | Gupta, M.; Mahajan, V.K.; Mehta, K.S.; Chauhan, P.S. Zinc Therapy in Dermatology: A Review. Dermatol. Res. Pract. 2014, 11, 709152. [ | pl_PL |
dc.references | Reeder, N.L.; Xu, J.; Youngquist, R.S.; Rust, R.C.; Saunders, C.W. The antifungal mechanism of action of zinc pyrithione. Br. J. Dermatol. 2011, 165, 9–12. | pl_PL |
dc.references | Piquero-Casals, J.; Hexsel, D.; Francisco Mir-Bonafé, J.; Rozas-Muñoz, E. Topical Non-Pharmacological Treatment for Facial Seborrheic Dermatitis. Dermatol. Ther. 2019, 9, 469–477. | pl_PL |
dc.references | Sharma, C.S.; Ramani, J.; Bhalodia, J.; Patel, N.; Thakkar, K.; Patel, R. Synthesis, Characterization and Antimicrobial Activity of Some Transition Metal Complexes (Mn, Co, Zn, Ni) With L-Proline and Kojic Acid. Adv. Appl. Sci. Res. 2011, 2, 374–382. | pl_PL |
dc.references | Sardana, K.; Garg, V.K. An observational study of methionine-bound zinc with antioxidants for mild to moderate acne vulgaris. Dermatol. Ther. 2010, 23, 411–418. | pl_PL |
dc.references | Bagchi, D.; Bagchi, M.; Stohs, S.J. Comparative in vitro oxygen radical scavenging ability of zinc methionine and selected zinc salts and antioxidants. Gen. Pharmac. 1997, 28, 85–91. | pl_PL |
dc.references | Mofokeng, T.P.; Moloto, M.J.; Shumbula, P.M.; Nyamukamba, P.; Mubiayi, P.K.; Takaidza, S.; Marais, L. Antimicrobial Activity of Amino Acid-Capped Zinc and Copper Sulphide Nanoparticles. J. Nanotechnol. 2018, 2018, 1–9. | pl_PL |
dc.references | Blicharz, A.L.; Rudnicka, L.; Samochocki, Z. Staphylococcus aureus: An underestimated factor in the pathogenesis of atopic dermatitis? Postepy Dermatol. Alergol. 2019, 36, 11–17. | pl_PL |
dc.references | Kuraitis, B.D.; Williams, L. Decolonization of Staphylococcus aureus in Healthcare: A Dermatology Perspective. J. Healthc. Eng. 2018, 2382050. | pl_PL |
dc.references | Akiyama, C.H.; Morizane, S.; Yamasaki, O.; Oono, T.; Iwatsuki, K. Assessment of Streptococcus pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. J. Dermatol. Sci. 2003, 32, 193–199. | pl_PL |
dc.references | Wu, D.D.C.; Chan, W.W.; Metelitsa, A.I.; Fiorillo, L.; Lin, A.N. Pseudomonas skin infection: Clinical features, epidemiology, and management. Am. J. Clin. Dermatol. 2011, 12, 157–169. | pl_PL |
dc.references | Wilson, R.B.; de Meester, P.; Hodgson, D.J. Structural characterization of bis(L-methionato)zinc(II), Zn(L-met)2. Inorg. Chem. 1977, 16, 1498–1502. | pl_PL |
dc.references | Poddar, R.; Jain, A.; Kidwai, M. Bis[(l)prolinate-N,O]Zn: A water-soluble and recycle catalyst for various organic transformations. J. Adv. Res. 2017, 8, 245–270. | pl_PL |
dc.references | Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-20 -yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. | pl_PL |
dc.references | Bukowska-Strzy˙zewska, M.; Maniukiewicz, W.; Siero ´n, L. The deformation of di-mi-halide dinuclear five-coordinate copper(II) complexes in the crystalline state. Acta Crystallogr. Sect. B 1997, 52, 466–475. | pl_PL |
dc.references | Duax, L.; Norton, D.A. Atlas of Steroid Structure; IFI/Plenum: New York, NY, USA, 1975; Volume 1, pp. 16–22. | pl_PL |
dc.references | Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm. 2009, 11, 19–32. | pl_PL |
dc.references | Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17, University of Western Australia. 2017. Available online: http://crystalexplorer.scb.uwa. edu.au/ (accessed on 19 February 2020). | pl_PL |
dc.references | Pinto, C.B.; Dos Santos, L.H.R.; Rodrigues, B.L. Understanding metal–ligand interactions in coordination polymers using Hirshfeld surface analysis. Acta Crystallogr. Sect. C 2019, 75, 707–716. | pl_PL |
dc.references | McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816. | pl_PL |
dc.references | Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002, 4, 378–392. | pl_PL |
dc.references | Frydrych, A.; Arct, J.; Kasiura, K. Zinc: A critical importance element in cosmetology. Appl. Cosmetol. 2004, 22, 1–13. | pl_PL |
dc.references | Hadjer, F.; Tahar, B.; Eddine, A.D.; Sofiane, D. Antioxidant and Antimicrobial Activity of Some Transition Metal Complexes with Non-natural Amino Acids Used as Ligand. J. Mater. Environ. Sci. 2018, 7, 2153–2157. | pl_PL |
dc.references | Lakshmi, S.S.; Geetha, K. Synthesis, characterization and biological studies of tridentate amino acid (L-tryptophan) Schiff base transition metal complexes. J. Chem. Pharm. Res. 2016, 8, 668–674. | pl_PL |
dc.references | Premlata, S.; Verma, G. Seth, Synthesis and Antibacterial Activity of Zn(II) Complexes with 2-substituted Benzothiazoles and Amino Acids. J. Chem. Pharm. Res. 2012, 4, 1327–1331. | pl_PL |
dc.references | Aiyelabola, T.O.; Isabirye, D.A.; Akinkunmi, E.O.; Ogunkunle, O.A.; Ojo, I.A.O. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid. J. Chem. 2016, 2016, 8. | pl_PL |
dc.references | Stănilă, A.; Braicu, C.; Stănilă, S. Antibacterial Activity of Copper and Cobalt Amino Acids Complexes. Not. Bot. Hort. Agrobot. Cluj. 2011, 39, 124–129. | pl_PL |
dc.references | CrysAlisPRO, version 1.171.38.41q. Rigaku Oxford Diffraction: Yarnton, UK, 2015. Available online: https://www.rigaku.com/products/smc/crysalis (accessed on 19 February 2020). | pl_PL |
dc.references | CrysAlisPRO, Ver. 1.171.39.46. Rigaku Oxford Diffraction: Yarnton, UK, 2015. Available online: https: //www.rigaku.com/products/smc/crysalis (accessed on 19 February 2020). | pl_PL |
dc.references | Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. | pl_PL |
dc.references | . Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. | pl_PL |
dc.references | Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. | pl_PL |
dc.references | Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D 2009, 65, 148–155. | pl_PL |
dc.contributor.authorEmail | aleksandra.felczak@biol.uni.lodz.pl | pl_PL |
dc.identifier.doi | https://doi.org/10.3390/molecules25040951 | |
dc.discipline | nauki chemiczne | pl_PL |