Show simple item record

dc.contributor.authorChęcińska, Lilianna
dc.contributor.authorAbendrot, Michał
dc.contributor.authorKusz, Joachim
dc.contributor.authorLisowska, Katarzyna
dc.contributor.authorZawadzka, Katarzyna
dc.contributor.authorFelczak, Aleksandra
dc.contributor.authorKalinowska-Lis, Urszula
dc.date.accessioned2021-09-10T08:59:14Z
dc.date.available2021-09-10T08:59:14Z
dc.date.issued2020
dc.identifier.citationAbendrot, M.; Chęcińska, L.; Kusz, J.; Lisowska, K.; Zawadzka, K.; Felczak, A.; Kalinowska-Lis, U. Zinc(II) Complexes with Amino Acids for Potential Use in Dermatology: Synthesis, Crystal Structures, and Antibacterial Activity. Molecules 2020, 25, 951. https://doi.org/10.3390/molecules25040951pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/39020
dc.description.abstractThe multifunctional profile of Zn2+ has influenced its great popularity in various pharmaceutical, food, and cosmetic products. Despite the use of different inorganic and organic zinc derivatives, the search for new zinc-containing compounds with a safer skin profile still remains an open issue. The present paper describes the synthesis, structural characterization, and antibacterial activity of zinc(II) complexes with proteinogenic amino acids as potential candidates for dermatological treatments. The obtained complexes are of the general formula [Zn(AA)2], where AA represents an amino acid (L-Glu, Gly, L-His, L-Pro, L-Met, and L-Trp). Their synthesis was designed in such a way that the final bis(aminoacidate) zinc(II) complexes did not contain any counter-ions such as Cl−, NO3 −, or SO4 2− that can cause some skin irritations. The chemical structure and composition of the compounds were identified by 1H NMR spectroscopy and elemental analysis, and four were also characterized by single-crystal X-ray diffraction. The Hirshfeld surface analysis for the Zn2+ metallic center helped to determine its coordination number and geometry for each complex. Finally, the antibacterial properties of the complexes were determined with respect to three Gram-positive strains, viz. Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, and Streptococcus pyogenes ATCC 19615, and two Gram-negative bacteria, viz. Escherichia coli ATCC 25992 and Pseudomonas aeruginosa ATCC 27853, and were compared with the activity of zinc 2-pirrolidone 5-carboxylate (ZnPCA), commonly applied in dermatology. It was found that the Zn(II) complexes with methionine and glycine exhibited a higher antibacterial activity than the tested standard, and the antimicrobial properties of complex with Trp were satisfactory. The results of the antimicrobial activity examination allow us to postulate that the obtained zinc complexes might become new active substances for use in dermatological products.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesMolecules;25, 951
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectzinc(II) complexespl_PL
dc.subjectproteinogenic amino acidspl_PL
dc.subjectcrystal structurespl_PL
dc.subjectantibacterial activitypl_PL
dc.subjectHirshfeld surface analysispl_PL
dc.titleZinc(II) Complexes with Amino Acids for Potential Use in Dermatology: Synthesis, Crystal Structures, and Antibacterial Activitypl_PL
dc.typeArticlepl_PL
dc.page.number17pl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łód ´z, Poland; lilianna.checinska@chemia.uni.lodz.plpl_PL
dc.contributor.authorAffiliationDepartment of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszy ´nskiego 1, 90-151 Łód ´z, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Łód ´z, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Łód ´z, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Łód ´z, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszy ´nskiego 1, 90-151 Łód ´z, Polandpl_PL
dc.identifier.eissn1420-3049
dc.referencesAbendrot, M.; Kalinowska-Lis, U. Zinc-containing compounds for personal care applications. Int. J. Cosmet. Sci. 2018, 40, 319–327.pl_PL
dc.referencesMyari, A.; Malandrinos, G.; Deligiannakis, Y.; Plakatouras, J.C.; Hadjiliadis, N.; Nagy, Z.; Sóvágó, I. Interaction of Cu(2+) with His-Val-His and of Zn(2+) with His-Val-Gly-Asp, two peptides surrounding metal ions in Cu,Zn-superoxide dismutase enzyme. J. Inorg. Biochem. 2001, 85, 253–261.pl_PL
dc.referencesKrishnamurthy, V.M.; Kaufman, G.K.; Urbach, A.R.; Gitlin, I.; Gudiksen, K.L.; Weibel, D.B.; Whitesides, G.M. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem. Rev. 2008, 108, 946–1051.pl_PL
dc.referencesKidambi, S.S.; Lee, D.K.; Ramamoorthy, A. Interaction of Cd and Zn with biologically important ligands characterized using solid-state NMR and ab initio calculations. Inorg. Chem. 2003, 42, 3142–3151.pl_PL
dc.referencesBagherani, N.; Smoller, B.R. An overview of zinc and its importance in dermatology-Part I: Importance and function of zinc in human beings. Glob. Dermatol. 2016, 3, 330–336.pl_PL
dc.referencesCassandri, M.; Smirnov, A.; Novelli, F.; Pitolli, C.; Agostini, M.; Malewicz, M.; Melino, G.; Raschellà, G. Zinc-finger proteins in health and disease. Cell Death Discov. 2017, 3, 17071.pl_PL
dc.referencesKr ˛a ˙zel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19.pl_PL
dc.referencesTrzaskowski, B.; Adamowicz, L.; Deymier, P.A. A theoretical study of zinc(II) interactions with amino acid models and peptide fragments. J. Biol. Inorg. Chem. 2008, 13, 133–137.pl_PL
dc.referencesDudev, T.; Lim, C. Tetrahedral vs. Octahedral Zinc Complexes with Ligands of Biological Interest: A DFT/CDM Study. J. Am. Chem. Soc. 2000, 122, 11146–11153.pl_PL
dc.referencesDeters, A.; Schnet, E.; Schmidt, M.; Hensel, A. Effects of zinc histidine and zinc sulfate on natural human keratinocytes. Forsch Komplem. 2003, 10, 19–25.pl_PL
dc.referencesSchlegel, P.; Windisch, W. Bioavailability of zinc glycinate in comparison with zinc sulphate in the presence of dietary phytate in an animal model with 65Zn labelled rats. J. Anim. Physiol. Anim. Nutr. 2006, 90, 216–222.pl_PL
dc.referencesSobel, S.; Theophall, G. The Complexation of Aqueous Metal Ions Relevant to Biological Applications. 2. Evaluation of simultaneous equilibria of poorly soluble zinc salts with select amino acids. Chem. Speciat. Bioavailab. 2010, 22, 201–205.pl_PL
dc.referencesAquilina, G.; Bach, A.; Bampidis, V.; De Lourdes Bastos, M.; Flachowsky, G.; Gasa-Gasó, J.; Gralak, M.A.; Hogstrand, C.; Leng, L.; López-Puente, S.; et al. Scientific Opinion on the safety and efficacy of niacin (nicotinic acid and nicotinamide) as a feed additive for all animal species based on a dossier submitted by VITAC EEIG. EFSA J. 2013, 11, 3038.pl_PL
dc.referencesAguilar, F.; Autrup, H.; Barlow, S.; Castle, L.; Crebelli, R.; Dekant, W.; Engel, K.-H.; Gontard, N.; Gott, D.; Grilli, S.; et al. Opinion on certain bisglycinates as sources of copper, zinc, calcium, magnesium and glycinate nicotinate as source of chromium in foods intended for the general population (including food supplements) and foods for particular nutritional uses. EFSA J. 2008, 718, 1–26.pl_PL
dc.referencesChen, N.N.; Liu, B.; Xiong, P.W.; Guo, Y.; He, J.N.; Hou, C.C.; Ma, L.X.; Yu, D.Y. Safety evaluation of zinc methionine in laying hens: Effects on laying performance, clinical blood parameters, organ development, and histopathology. Poult. Sci. 2018, 97, 1120–1126.pl_PL
dc.referencesPlum, L.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365.pl_PL
dc.referencesKim, K.B.; Kim, Y.W.; Lim, S.K.; Roh, T.H.; Bang, D.Y.; Choi, S.M.; Lim, D.S.; Kim, Y.J.; Baek, S.H.; Kim, M.K.; et al. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. J. Toxicol. Environ. Health B Crit. Rev. 2017, 20, 155–182.pl_PL
dc.referencesGupta, M.; Mahajan, V.K.; Mehta, K.S.; Chauhan, P.S. Zinc Therapy in Dermatology: A Review. Dermatol. Res. Pract. 2014, 11, 709152. [pl_PL
dc.referencesReeder, N.L.; Xu, J.; Youngquist, R.S.; Rust, R.C.; Saunders, C.W. The antifungal mechanism of action of zinc pyrithione. Br. J. Dermatol. 2011, 165, 9–12.pl_PL
dc.referencesPiquero-Casals, J.; Hexsel, D.; Francisco Mir-Bonafé, J.; Rozas-Muñoz, E. Topical Non-Pharmacological Treatment for Facial Seborrheic Dermatitis. Dermatol. Ther. 2019, 9, 469–477.pl_PL
dc.referencesSharma, C.S.; Ramani, J.; Bhalodia, J.; Patel, N.; Thakkar, K.; Patel, R. Synthesis, Characterization and Antimicrobial Activity of Some Transition Metal Complexes (Mn, Co, Zn, Ni) With L-Proline and Kojic Acid. Adv. Appl. Sci. Res. 2011, 2, 374–382.pl_PL
dc.referencesSardana, K.; Garg, V.K. An observational study of methionine-bound zinc with antioxidants for mild to moderate acne vulgaris. Dermatol. Ther. 2010, 23, 411–418.pl_PL
dc.referencesBagchi, D.; Bagchi, M.; Stohs, S.J. Comparative in vitro oxygen radical scavenging ability of zinc methionine and selected zinc salts and antioxidants. Gen. Pharmac. 1997, 28, 85–91.pl_PL
dc.referencesMofokeng, T.P.; Moloto, M.J.; Shumbula, P.M.; Nyamukamba, P.; Mubiayi, P.K.; Takaidza, S.; Marais, L. Antimicrobial Activity of Amino Acid-Capped Zinc and Copper Sulphide Nanoparticles. J. Nanotechnol. 2018, 2018, 1–9.pl_PL
dc.referencesBlicharz, A.L.; Rudnicka, L.; Samochocki, Z. Staphylococcus aureus: An underestimated factor in the pathogenesis of atopic dermatitis? Postepy Dermatol. Alergol. 2019, 36, 11–17.pl_PL
dc.referencesKuraitis, B.D.; Williams, L. Decolonization of Staphylococcus aureus in Healthcare: A Dermatology Perspective. J. Healthc. Eng. 2018, 2382050.pl_PL
dc.referencesAkiyama, C.H.; Morizane, S.; Yamasaki, O.; Oono, T.; Iwatsuki, K. Assessment of Streptococcus pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. J. Dermatol. Sci. 2003, 32, 193–199.pl_PL
dc.referencesWu, D.D.C.; Chan, W.W.; Metelitsa, A.I.; Fiorillo, L.; Lin, A.N. Pseudomonas skin infection: Clinical features, epidemiology, and management. Am. J. Clin. Dermatol. 2011, 12, 157–169.pl_PL
dc.referencesWilson, R.B.; de Meester, P.; Hodgson, D.J. Structural characterization of bis(L-methionato)zinc(II), Zn(L-met)2. Inorg. Chem. 1977, 16, 1498–1502.pl_PL
dc.referencesPoddar, R.; Jain, A.; Kidwai, M. Bis[(l)prolinate-N,O]Zn: A water-soluble and recycle catalyst for various organic transformations. J. Adv. Res. 2017, 8, 245–270.pl_PL
dc.referencesAddison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-20 -yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356.pl_PL
dc.referencesBukowska-Strzy˙zewska, M.; Maniukiewicz, W.; Siero ´n, L. The deformation of di-mi-halide dinuclear five-coordinate copper(II) complexes in the crystalline state. Acta Crystallogr. Sect. B 1997, 52, 466–475.pl_PL
dc.referencesDuax, L.; Norton, D.A. Atlas of Steroid Structure; IFI/Plenum: New York, NY, USA, 1975; Volume 1, pp. 16–22.pl_PL
dc.referencesSpackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm. 2009, 11, 19–32.pl_PL
dc.referencesTurner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17, University of Western Australia. 2017. Available online: http://crystalexplorer.scb.uwa. edu.au/ (accessed on 19 February 2020).pl_PL
dc.referencesPinto, C.B.; Dos Santos, L.H.R.; Rodrigues, B.L. Understanding metal–ligand interactions in coordination polymers using Hirshfeld surface analysis. Acta Crystallogr. Sect. C 2019, 75, 707–716.pl_PL
dc.referencesMcKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816.pl_PL
dc.referencesSpackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002, 4, 378–392.pl_PL
dc.referencesFrydrych, A.; Arct, J.; Kasiura, K. Zinc: A critical importance element in cosmetology. Appl. Cosmetol. 2004, 22, 1–13.pl_PL
dc.referencesHadjer, F.; Tahar, B.; Eddine, A.D.; Sofiane, D. Antioxidant and Antimicrobial Activity of Some Transition Metal Complexes with Non-natural Amino Acids Used as Ligand. J. Mater. Environ. Sci. 2018, 7, 2153–2157.pl_PL
dc.referencesLakshmi, S.S.; Geetha, K. Synthesis, characterization and biological studies of tridentate amino acid (L-tryptophan) Schiff base transition metal complexes. J. Chem. Pharm. Res. 2016, 8, 668–674.pl_PL
dc.referencesPremlata, S.; Verma, G. Seth, Synthesis and Antibacterial Activity of Zn(II) Complexes with 2-substituted Benzothiazoles and Amino Acids. J. Chem. Pharm. Res. 2012, 4, 1327–1331.pl_PL
dc.referencesAiyelabola, T.O.; Isabirye, D.A.; Akinkunmi, E.O.; Ogunkunle, O.A.; Ojo, I.A.O. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid. J. Chem. 2016, 2016, 8.pl_PL
dc.referencesStănilă, A.; Braicu, C.; Stănilă, S. Antibacterial Activity of Copper and Cobalt Amino Acids Complexes. Not. Bot. Hort. Agrobot. Cluj. 2011, 39, 124–129.pl_PL
dc.referencesCrysAlisPRO, version 1.171.38.41q. Rigaku Oxford Diffraction: Yarnton, UK, 2015. Available online: https://www.rigaku.com/products/smc/crysalis (accessed on 19 February 2020).pl_PL
dc.referencesCrysAlisPRO, Ver. 1.171.39.46. Rigaku Oxford Diffraction: Yarnton, UK, 2015. Available online: https: //www.rigaku.com/products/smc/crysalis (accessed on 19 February 2020).pl_PL
dc.referencesSheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8.pl_PL
dc.references. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8.pl_PL
dc.referencesMacrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470.pl_PL
dc.referencesSpek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D 2009, 65, 148–155.pl_PL
dc.contributor.authorEmailaleksandra.felczak@biol.uni.lodz.plpl_PL
dc.identifier.doihttps://doi.org/10.3390/molecules25040951
dc.disciplinenauki chemicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe