Pokaż uproszczony rekord

dc.contributor.authorCichomski, Michal
dc.contributor.authorProwizor, Milena
dc.contributor.authorKowalczyk, Dorota Anna
dc.contributor.authorSikora, Andrzej
dc.contributor.authorBatory, Damian
dc.contributor.authorDudek, Mariusz
dc.date.accessioned2021-09-14T09:07:28Z
dc.date.available2021-09-14T09:07:28Z
dc.date.issued2020
dc.identifier.citationCichomski, M.; Prowizor, M.; Kowalczyk, D.A.; Sikora, A.; Batory, D.; Dudek, M. Comparison of the Physicochemical Properties of Carboxylic and Phosphonic Acid Self-Assembled Monolayers Created on a Ti-6Al-4V Substrate. Materials 2020, 13, 5137. https://doi.org/10.3390/ma13225137pl_PL
dc.identifier.issn1996-1944
dc.identifier.urihttp://hdl.handle.net/11089/39052
dc.description.abstractThis study compared the tribological properties in nano- and millinewton load ranges of Ti-6Al-4V surfaces that were modified using self-assembled monolayers (SAMs) of carboxylic and phosphonic acids. The effectiveness of the creation of SAMs with the use of the liquid phase deposition (LPD) technique was monitored by the contact angle measurement, the surface free energy (SFE) calculation, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) measurements. The obtained results indicated that more stable and well-ordered layers, which were characterized by the lowest values of the coefficient of friction, adhesion, and wear rate, were obtained using phosphonic acid as a surface modifier. Based on the obtained results, it was found that the Ti-6Al-4V alloy modified by phosphonic acid would be the most advantageous for practical applications, especially in micro- and nanoelectromechanical systems (MEMS/NEMS).pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesMaterials;13(22), 5137
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcarboxylic/phosphonic acidpl_PL
dc.subjectTi-6Al-4V alloypl_PL
dc.subjectadhesionpl_PL
dc.subjectfrictionpl_PL
dc.subjectnano-/microtribologypl_PL
dc.titleComparison of the Physicochemical Properties of Carboxylic and Phosphonic Acid Self-Assembled Monolayers Created on a Ti-6Al-4V Substratepl_PL
dc.typeArticlepl_PL
dc.page.number17pl_PL
dc.contributor.authorAffiliationDepartment of Materials Technology and Chemistry, University of Lodz, Faculty of Chemistry, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Materials Technology and Chemistry, University of Lodz, Faculty of Chemistry, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Nanometrology, Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Vehicles and Fundamentals in Machine Design, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Polandpl_PL
dc.referencesLi, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New developments of Ti-based alloys for biomedical applications. Materials 2014, 7, 1709–1800.pl_PL
dc.referencesAbkowitz, A.; Burke, J.J.; Hiltz, B.H. Titanium in Industry; D. Van Nostrand: New York, NY, USA, 1995.pl_PL
dc.referencesElias, C.N.; Lima, J.H.C.; Valiev, R.; Meyers, M.A. Biomedical Applications of Titanium and its Alloys. JOM 2008, 60, 46–49.pl_PL
dc.referencesSovak, G.; Gotman, I.; Weiss, A. Osseointegration of Ti–6Al–4V Alloy Implants with a Titanium Nitride Coating Produced by a PIRAC Nitriding Technique: A Long-Term Time Course Study in the Rat. Microsc. Microanal. 2015, 21, 179–189.pl_PL
dc.referencesAnderson, C.; Mikaberidze, M.; Gordeziani, G.; Gozalishvili, E.; Akhvlediani, L.; Ramazashvili, D. Corrosion Resistant Titanium Alloys for Medical Tools and Implants. J. Powder Metall. Min. 2013, 2, 000110.pl_PL
dc.referencesGeetha, M.; Singh, A.; Asokamani, R.; Gogia, A. Ti based biomaterials, the ultimate choice for orthopedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425.pl_PL
dc.referencesGuleryuz, H.; Cimenoglu, H. Surface modification of a Ti-6Al-4V alloy by thermal oxidation. Surf. Coat. Technol. 2005, 192, 164–170.pl_PL
dc.referencesSansone, V.; Pagani, D.; Melato, M. The effects on bone cells of metal ions released from orthopedic implants. A review. Clin. Cases Miner. Bone Metab. 2013, 10, 34–40.pl_PL
dc.referencesVadiraj, A.; Kamaraj, M. Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys. Tribol. Int. 2007, 40, 82–88.pl_PL
dc.referencesAntoniou, R.A.; Radtke, T.C. Mechanism of fretting fatigue of titanium alloys. Mater. Sci. Eng. 1997, 237, 229–240.pl_PL
dc.referencesDong, H.; Bell, T. Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear 2000, 238, 131–137.pl_PL
dc.referencesFridrici, V.; Fouvry, S.; Kapsa, P. Effect of shot peening on the fretting wear of Ti–6Al–4V. Wear 2001, 250, 642–649.pl_PL
dc.referencesDudek, M.; Fouvry, S.; Wendler, B.; Kapsa, P.; Liskiewicz, T. The effect of diffusion treatments in a glow-discharge plasma in Ar+O2 atmosphere on friction and wear of Ti–6Al–4V alloy. Vacuum 2003, 70, 187–191.pl_PL
dc.referencesJedrzejczak, A.; Kolodziejczyk, L.; Szymanski, W.; Piwonski, I.; Cichomski, M.; Kisielewska, A.; Dudek, M.; Batory, D. Friction and wear of a-C:H:SiOx coatings in combination with AISI 316L and ZrO2 counterbodies. Tribol. Int. 2017, 112, 155–162.pl_PL
dc.referencesBhushan, B.; Cichomski, M.; Tao, Z.; Tran, N.T.; Ethen, T.; Merton, C.; Jewett, R.E. Nanotribological Characterization and Lubricant Degradation Studies of Metal-Film Magnetic Tapes Using Novel Lubricants. J. Tribol. 2007, 129, 621–627.pl_PL
dc.referencesHahner, G.; Hofer, R.; Klingenfuss, I. Order and Orientation in Self-Assembled Long Chain Alkanephosphate Monolayers Adsorbed on Metal Oxide Surfaces. Langmuir 2001, 17, 7047–7052.pl_PL
dc.referencesTaffa, D.H.; Kathiresan, M.; Walder, L. Tuning the Hydrophilic, Hydrophobic, and Ion Exchange Properties of Mesoporous TiO2 . Langmuir 2009, 25, 5371–5379.pl_PL
dc.referencesHoque, E.; DeRose, J.A.; Hoffmann, P.; Mathieu, H.J.; Bhushan, B.; Cichomski, M. Phosphonate self-assembled monolayers on aluminum surfaces. J. Chem. Phys. 2006, 124, 174710.pl_PL
dc.referencesBhushan, B.; Cichomski, M.; Hoque, E.; DeRose, J.A.; Hoffmann, P.; Mathieu, H.J. Nanotribological characterization of perfluoroalkylphosphonate self-assembled monolayers deposited on aluminum-coated silicon substrates. Microsyst. Technol. 2006, 12, 588–596.pl_PL
dc.referencesPtak, A.; Makowski, M.; Cichomski, M. Characterization of nanoscale adhesion between a fluoroalkyl silane monolayer and a silicon AFM tip. Complex character of the interaction potential. Chem. Phys. Lett. 2010, 489, 54–58.pl_PL
dc.referencesKrzykawska, A.; Ossowski, J.; Zaba, T.; Cyganik, P. Binding groups for highly ordered SAM formation: ˙ Carboxylic versus thiol. R. Soc. Chem. Chem. Commun. 2017, 53, 5748–5751.pl_PL
dc.referencesMarcinko, S.; Fadeev, A.Y. Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir 2004, 20, 2270–2273.pl_PL
dc.referencesHan, X.; Sun, X.; He, T.; Sun, S. Formation of highly stable self-assembled alkyl phosphonic acid monolayers for the functionalization of titanium surfaces and protein patterning. Langmuir 2015, 31, 140–148.pl_PL
dc.referencesGuerrero, G.; Alauzun, J.G.; Granier, M.; Laurencin, D.; Mutin, H. Phosphonate coupling molecules for the control of surface/interface properties and the synthesis of nanomaterials. R. Soc. Chem. Dalton Trans. 2013, 42, 12569–12585.pl_PL
dc.referencesSikora, A.; Bednarz, L.; Ekwinski, G.; Ekwinska, M. The determination of the spring constant of T-shaped cantilevers using calibration structures. Meas. Sci. Technol. 2014, 25, 044015.pl_PL
dc.referencesRozlosnik, N.; Gerstenberg, M.C.; Larsen, N.B. Effect of Solvents and Concentration on the Formation of a Self-Assembled Monolayer of Octadecylsiloxane on Silicon. Langmuir 2003, 19, 1182–1188.pl_PL
dc.referencesGlaser, A.; Foisner, J.; Friedbacher, G.; Hoffmann, H. Low-temperature investigation of the growth mechanism of alkylsiloxane self-assembled monolayers. Anal. Bioanal. Chem. 2004, 379, 653–657.pl_PL
dc.referencesGong, Y.; Wang, M.C.; Zhang, X.; Ng, H.W.; Gates, B.D. Optimizing the quality of monoreactive perfluoroalkylsilane-based self-assembled monolayers. Langmuir 2012, 28, 11790–11801.pl_PL
dc.referencesVallant, T.; Brunner, H.; Mayer, U.; Hoffmann, H.; Leitner, T.; Friedbacher, G. Formation of self-assembled octadecylsiloxane monolayers on mica and silicon surfaces studied by atomic force microscopy and infrared spectroscopy. J. Phys. Chem. B 1998, 102, 7190–7197.pl_PL
dc.referencesCichomski, M.; Prowizor, M.; Borkowska, E.; Piwo ´nski, I.; J ˛edrzejczak, A.; Dudek, M.; Batory, D.; Wro ´nska, N.; Lisowska, K. Impact of perfluoro and alkylphosphonic self-assembled monoayers on tribological and antimicrobial properties of Ti-DLC coatings. Materials 2019, 12, 2365.pl_PL
dc.referencesCichomski, M. Tribological investigations of perfluoroalkylsilanes monolayers deposited on titanium surface. Mater. Chem. Phys. 2012, 136, 498–504.pl_PL
dc.referencesCichomski, M.; Kisielewska, A.; Prowizor, M.; Borkowska, E.; Piwo ´nski, I.; Dudek, M.; J ˛edrzejczak, A.; Batory, D. The influence of self-assembled monolayers on tribological properties of Si-DLC coatings. Surf. Topogr. Metrol. Prop. 2019, 7, 045006.pl_PL
dc.referencesKrafft, M.P. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Deliv. Rev. 2001, 47, 209–228.pl_PL
dc.referencesKrafft, M.P.; Riess, J.G. Chemistry, physical chemistry, and uses of molecular fluorocarbon−hydrocarbon diblocks, triblocks, and related compounds—Unique ‘Apolar’ components for self-assembled colloid and interface engineering. Chem. Rev. 2009, 109, 1714–1792.pl_PL
dc.referencesDalvi, V.H.; Rossky, P.J. Molecular origins of fluorocarbon hydrophobicity. Proc. Natl. Acad. Sci. USA 2010, 107, 13603–13607.pl_PL
dc.referencesMiller, T.M.; Bederson, B. Atomic and molecular polarizabilities-a review of recent advances. Adv. Aant. Mol. Opt. Phys. 1978, 13, 1–55.pl_PL
dc.referencesDunitz, J.D. Organic fluorine: Odd man out. ChemBioChem 2004, 5, 614–621.pl_PL
dc.referencesHelmy, R.; Fadeev, A.Y. Self-assembled monolayers supported on TiO2 : Comparison of C18H37SiX3 (X=H, Cl, OCH3 ), C18H37Si(CH3 )2Cl, and C18H37PO(OH)2 . Langmuir 2002, 18, 8924–8928.pl_PL
dc.referencesWallace, R.M.; Chen, P.J.; Henck, S.A.; Webb, D.A. Adsorption of perfluorinated n-alkanoic acids on native aluminum oxide surfaces. J. Vac. Sci. Technol. A 1995, 13, 1345–1350.pl_PL
dc.referencesDeRose, J.A.; Hoque, E.; Bhushan, B.; Mathieu, H.J. Characterization of perfluorodecanoate self-assembled monolayers on aluminum and comparison of stability with phosphonate and siloxy self-assembled monolayers. Surf. Sci. 2008, 602, 1360–1367.pl_PL
dc.referencesKarlsson, J.; Snis, A.; Engqvist, H.; Lausmaa, J. Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions. J. Mater. Process. Technol. 2013, 213, 2109–2118.pl_PL
dc.referencesCichomski, M.; Ko´sla, K.; Pawlak, W.; Kozłowski, W.; Szmaja, W. Stability and tribological investigations of 1H,1H,2H,2H-perfluoroalkyltrichlorosilane on titania surface. Tribol. Int. 2014, 77, 1–6.pl_PL
dc.referencesTing, G.G.; Acton, O.; Ma, H.; Ka, J.W.; Jen, A.K.Y. Study on the formation of self-assembled monolayers on sol-gel processed hafnium oxide as dielectric layers. Langmuir 2009, 25, 2140–2147.pl_PL
dc.referencesZuilhof, H.; Pujari, S.P.; Scheres, L.; Marcelis, A.T.M. Covalent Surface Modification of Oxide Surfaces. Angew. Chem. Int. Ed. 2014, 53, 2–36.pl_PL
dc.referencesBrodard-Severac, F.; Guerrero, G.; Maquet, J.; Florian, P.; Gervais, C.; Mutin, P.H. High-Field 17O MAS NMR Investigation of Phosphonic Acid Monolayers on Titania. Chem. Mater. 2008, 20, 5191–5196.pl_PL
dc.referencesTextor, M.; Ruiz, L.; Hofer, R.; Rossi, A.; Feldman, K.; Hahner, G.; Spencer, N.D. Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir 2000, 16, 3257.pl_PL
dc.referencesDavies, P.R.; Newton, N.G. The chemisorption of organophosphorus compounds at an Al(111) surface. Appl. Surf. Sci. 2001, 181, 296.pl_PL
dc.referencesKorrapatia, V.K.; Scharnagl, N.; Letzig, D.; Zheludkevich, M.L. Self-assembled layers for the temporary corrosion protection of magnesium-AZ31 alloy. Corros. Sci. 2020, 179, 108619.pl_PL
dc.referencesAndrews, B.; Almahdali, S.; James, K.; Ly, S.; Crowder, K.N. Copper oxide surfaces modified by alkylphosphonic acids with terminal pyridyl-based ligands as a platform for supported catalysis. Polyhedron 2016, 114, 360–369.pl_PL
dc.referencesYan, Y.; Chibowski, E.; Szcze´s, A. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy. Mater. Sci. Eng. C 2017, 70, 207–215.pl_PL
dc.referencesvan Oss, C.J.; Chaudhury, M.K.; Good, R.J. Interfacial Lifschitz-van der Waals and Polar Interactions in Microscopic Systems. J. Chem. Rev. 1988, 88, 927–941.pl_PL
dc.referencesChen, Z.; He, X.; Xiao, C.; Kim, S.H. Effect of humidity on friction and wear-a critical review. Lubricants 2018, 6, 74.pl_PL
dc.referencesZhang, J.; Ebbens, S.; Chen, X.; Jin, Z.; Luk, S.; Madden, C.; Patel, N.; Roberts, C.J. Determination of the Surface Free Energy of Crystalline and Amorphous Lactose by Atomic Force Microscopy Adhesion Measurement. Pharm. Res. 2006, 23, 401–407.pl_PL
dc.referencesIsraelachvili, J.N. Intermolecular and Surface Forces, 2nd ed.; Academic Press: London, UK, 1991.pl_PL
dc.referencesChoe, H.; Hong, M.H.; Seo, Y.; Lee, K.; Kim, G.; Cho, Y.; Ihm, J.; Jhe, W. Formation, Manipulation, and Elasticity Measurement of a Nanometric Column of Water Molecules. Phys. Rev. Lett. 2005, 95, 187801.pl_PL
dc.contributor.authorEmailmichal.cichomski@chemia.uni.lodz.plpl_PL
dc.identifier.doihttps://doi.org/10.3390/ma13225137
dc.disciplinenauki chemicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe