dc.contributor.author | Śniegula, Anna | |
dc.contributor.author | Mastalerz, Marcin W. | |
dc.contributor.author | Kwiatkowski, Sławomir | |
dc.contributor.author | Malinowski, Aleksander | |
dc.contributor.author | Wieczorek, Bartosz | |
dc.date.accessioned | 2021-09-14T10:10:06Z | |
dc.date.available | 2021-09-14T10:10:06Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Marcin W. Mastalerz, Aleksander Malinowski, Sławomir Kwiatkowski, Anna Śniegula, Bartosz Wieczorek, Passenger BIBO detection with IoT support and machine learning techniques for intelligent transport systems, Procedia Computer Science, Volume 176, 2020, Pages 3780-3793, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.09.009. | pl_PL |
dc.identifier.issn | 1877-0509 | |
dc.identifier.uri | http://hdl.handle.net/11089/39055 | |
dc.description.abstract | The present article discusses the issue of automation of the CICO (Check-In/Check-Out) process for public transport fare collection systems, using modern tools forming part of the Internet of Things, such as Beacon and Smartphone. It describes the concept of an integrated passenger identification model applying machine learning technology in order to reduce or eliminate the risks associated with the incorrect classification of a smartphone user as a vehicle passenger. This will allow for the construction of an intelligent fare collection system, operating in the BIBO (Be-In/Be-Out) model, implementing the "hands-free" and "pay-as-you-go" approach. The article describes the architecture of the research environment, and the implementation of the elaborated model in the Bad.App4 proprietary solution. We also presented the complete process of concept verification under real-life conditions. Research results were described and supplemented with commentary. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Elsevier | pl_PL |
dc.relation.ispartofseries | Procedia Computer Science;176 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Machine learning | pl_PL |
dc.subject | Electronic Toll Collection System | pl_PL |
dc.subject | Internet of Things | pl_PL |
dc.subject | Beacon | pl_PL |
dc.subject | Smartphone | pl_PL |
dc.subject | Prediction Analytics | pl_PL |
dc.subject | Smart city | pl_PL |
dc.title | Passenger BIBO detection with IoT support and machine learning techniques for intelligent transport systems | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 3780-3793 | pl_PL |
dc.contributor.authorAffiliation | University of Lodz, Department of Computer Science in Economics, St. POW 3/5, Lódź 90-255, Poland | pl_PL |
dc.contributor.authorAffiliation | University of Szczecin, Department of Computer Science in Management, Cukrowa 8, Szczecin 71-004, Poland | pl_PL |
dc.contributor.authorAffiliation | Bradley University, Department of Electrical and Computer Engineering, 1501 W Bradley Ave, Peoria, IL 61625, USA | pl_PL |
dc.contributor.authorAffiliation | Asseco Data Systems S.A., St. Podolska 21, Gdynia 81-321, Poland | pl_PL |
dc.contributor.authorAffiliation | Lodz University of Technology, Institute of Information Technology, St. Wólczańska 215, Lodz 90-924, Poland | pl_PL |
dc.references | M. A. Ali, H. E. Abd El Munim, A. H. Yousef, and S. Hammad. (2018). “A deep learning approach for vehicle detection”. In 2018 13th International Conference on Computer Engineering and Systems (ICCES), pages 98-102. doi: 10.1109/ICCES.2018.8639313. | pl_PL |
dc.references | Android Developers, Detect when users start or end an activity. https://developer.android.com/guide/topics/location/transitions. (02.03.2020). | pl_PL |
dc.references | Asseco Data Systems S.A. “Nowatorska koncepcja poboru opłat i rozliczania usług miejskich w ramach SmartCity”. https://www.assecods.pl/o-firmie/badania-i-rozwoj. (10.02.2020). | pl_PL |
dc.references | L. Atzori, A. Iera, G. Morabito "The internet of things: A survey. Computer networks", 54 (15) (2010), pp. 2787-2805 https://doi.org/10.1016/j.comnet.2010.05.010, 2010. Oct 28 | pl_PL |
dc.references | R. A. R. Bedruz, A. Fernando and others. (2018) “Vehicle classification using AKAZE and feature matching approach and artificial neural network”. In TENCON 2018 - 2018 IEEE Region 10 Conference, pages 1824-1827. IEEE. ISBN 78-1-5386-5457-6. doi: 10.1109/TENCON.2018.8650119. URL https://ieeexplore.ieee.org/document/8650119/ | pl_PL |
dc.references | P. T. Blythe. (2004) “Improving public transport ticketing through smart cards”. Proceedings of the ICE-Municipal Engineer, vol. 157, 1, pp. 47-54, 2004. | pl_PL |
dc.references | A. Caraglui, B.C. Del, P. Nijkamp "Smart Cities in Europe" Journal of Urban Technology, 18 (2011), pp. 65-82 2011 | pl_PL |
dc.references | R. N. Celso, Z. B. Ting and others. (2018). “Twostep vehicle classification system for traffic monitoring in the Philippines”. In TENCON 018 - 2018 IEEE Region 10 Conference, pages 2028-2033. IEEE. ISBN 978-1-5386-5457-6. doi: 0.1109/TENCON.2018.8650420. | pl_PL |
dc.references | Forbes Technology Council. (2016). “11 New Technology Trends To Watch”, Forbes, 09-08-2016, https://www.forbes.com/sites/forbestechcouncil/2016/08/09/11-new-technology-trends-to-watch/#3316ed5e4954 (20-01-2020). | pl_PL |
dc.references | S. Garg, P. Singh and others. (2014) “Smartphone based vehicle classification and its applications in developing region”. In MobiQuitous. doi: 10.4108/icst.mobiquitous.2014.257982. | pl_PL |
dc.references | GWT-TUD GmbH. (2009). “Research Project Be-In-Be-Out Payment Systems for Public Transport”, Dresden, July 2009, http://webarchive.nationalarchives.gov.uk/20091203214536/http:/www.dft.gov.uk/pgr/scienceresearch/orresearch/paymentsystems.pdf. (20-12-2020). | pl_PL |
dc.references | C. Jobanputra, J. Bavishi, N. Doshi "Human Activity Recognition: A Survey." Procedia Computer Science, 155 (2019), pp. 698-703 https://doi.org/10.1016/j.procs.2019.08.100 | pl_PL |
dc.references | S. Kanarachos, S.R.G. Christopoulos, A. Chroneos "Smartphones as an integrated platform for monitoring driver behaviour: The role of sensor fusion and connectivity" Transportation Research Part C: Emerging Technologies, 95 (2016), pp. 867-882 https://doi.org/10.1016/j.trc.2018.03.023, October 2018 | pl_PL |
dc.references | M. Lin, X. Zhao. (2019). “Application research of neural network in vehicle target recognition and classification”. pages 5-8. doi: 10.1109/icitbs.2019.00010. | pl_PL |
dc.references | N. Mallat, M. Rossi and others "An empirical investigation of mobile ticketing service adoption in public transportation" Personal and Ubiquitous Computing, 12 (1) (2008), pp. 57-65 2008 | pl_PL |
dc.references | M.W. Mastalerz, A. Malinowski and others "Use of IoT Solutions for Creating a BeIn/BeOut Model of an Electronic Fare Collection System for Public Transport - a Research Model", Task Publishing, Gdansk University of Technology (2019), pp. 85-91 Gdansk 2019 | pl_PL |
dc.references | T. McDaniel, F. Haendler, (1993) “Advanced rf cards for fare collection”. Telesystems Conference. Commercial Applications and Dual-UseTechnology, Conference Proceedings., National, Jun 1993, pp. 31-35. | pl_PL |
dc.references | W. Narzt, S. Mayerhofer and others. (2015). “Be-in/be-out with Bluetooth low energy: Implicit ticketing for public transportation systems, Intelligent Transportation Systems (ITSC)”, 2015 IEEE 18th International Conference on. IEEE, 2015, pp. 1551- 1556. | pl_PL |
dc.references | H. Omrani "Predicting travel mode of individuals by machine learning", 10 (2015), pp. 840-849 http://www.sciencedirect.com/science/article/pii/S2352146515002240., ISSN2352-1465. doi: 10.1016/j.trpro.2015.09.037. URL | pl_PL |
dc.references | W. Posdorfer, W. Maalej "Towards context-aware surveys using bluetooth beacons" Procedia Computer Science, 83 (2016), pp. 42-49 | pl_PL |
dc.references | E. A. Roxas, R. R. P. Vicerra and others. (2018). “Multi-scale vehicle classification using different machine learning models”. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM), pages 1-5. IEEE. ISBN 978-1-5386-7767-4. doi: 10.1109/HNICEM.2018.8666378. | pl_PL |
dc.references | C. Sarkar, J.J. Treurniet and others "SEAT: Secure Energy-Efficient Automated Public Transport Ticketing System" IEEE Trans. on Green Commun. Netw., 2 (2018), pp. 222-233 https://doi.org/10.1109/TGCN.2017.2779833 | pl_PL |
dc.references | J. Shah, J. Kothari, N. Doshi. (2019.) “A Survey of Smart City infrastructure via Case study on New York”. Procedia Computer Science, The 10th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2019) / The 9th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2019) / Affiliated Workshops 160, 702-705. https://doi.org/10.1016/j.procs.2019.11.024 | pl_PL |
dc.references | G. Singh, D. Bansal, S. Sofat "A smartphone based technique to monitor driving behavior using DTW and crowdsensing" Pervasive and Mobile Computing, 40 (2017), pp. 56-70 https://doi.org/10.1016/j.pmcj.2017.06.003, (September 2017) | pl_PL |
dc.references | M. Simoncini, L. Taccari and others "Vehicle classification from low-frequency GPS data with recurrent neural networks" Transportation Research Part C: Emerging Technologies, 91 (2018), pp. 176-191 https://doi.org/10.1016/j.trc.2018.03.024 | pl_PL |
dc.references | D. Vakula, B. Raviteja. (2017) “Smart public transport for smart cities” in: 2017 International Conference on Intelligent Sustainable Systems (ICISS). Presented at the 2017 International Conference on Intelligent Sustainable Systems (ICISS), IEEE, Palladam, pp. 805-810. https://doi.org/10.1109/ISS1.2017.8389288 | pl_PL |
dc.references | S. van Cranenburgh, A. Alwosheel "An artificial neural network based approach to investigate travellers’ decision rules" Transportation Research Part C: Emerging Technologies, 98 (2019), pp. 152-166 https://doi.org/10.1016/j.trc.2018.11.014 | pl_PL |
dc.references | E.I. Vlahogianni, E.N. Barmpounakis "Driving analytics using smartphones: Algorithms, comparisons and challenges" Transportation Research Part C: Emerging Technologies, 79 (2017), pp. 196-206 https://doi.org/10.1016/j.trc.2017.03.014 | pl_PL |
dc.references | R. Widmann, S. Grünberger and others. (2012). “System integration of nfc ticketing into an existing public transport infrastructure”, Near Field Communication (NFC), 2012 4th International Workshop on. IEEE, 2012, pp. 13-18. | pl_PL |
dc.references | M.H. Wirtz, J. Klähr. (2018) “Smartphone based in/out ticketing systems: a new generation of ticketing in public transport and its performance testing”. Presented at the URBAN TRANSPORT 2018, Seville, Spain, pp. 351-359. https://doi.org/10.2495/UT180321. | pl_PL |
dc.identifier.doi | 10.1016/j.procs.2020.09.009 | |
dc.discipline | ekonomia i finanse | pl_PL |
dc.discipline | informatyka | pl_PL |