dc.contributor.author | Skiba, Joanna | |
dc.contributor.author | Kowalski, Konrad | |
dc.contributor.author | Bernaś, Tytus | |
dc.contributor.author | Trzybiński, Damian | |
dc.contributor.author | Woźniak, Krzysztof | |
dc.contributor.author | Ferraro, Giarita | |
dc.contributor.author | Merlino, Antonello | |
dc.contributor.author | Marasco, Daniela | |
dc.contributor.author | Shafikov, Marsel Z. | |
dc.contributor.author | Czerwieniec, Rafał | |
dc.date.accessioned | 2021-10-13T12:30:31Z | |
dc.date.available | 2021-10-13T12:30:31Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://hdl.handle.net/11089/39374 | |
dc.description.abstract | Two new neutral fac-[Re(CO)3(phen)L] compounds (1,2), with phen = 1,10-phenanthroline and L = O2C(CH2)5CH3 or O2C(CH2)4C≡CH, were synthetized in one-pot procedures from fac-[Re(CO)3(phen)Cl] and the corresponding carboxylic acids, and were fully characterized by IR and UV-Vis absorption spectroscopy, 1H- and 13C-NMR, mass spectrometry and X-ray crystallography. The compounds, which display orange luminescence, were used as probes for living cancer HeLa cell staining. Confocal microscopy revealed accumulation of both dyes in mitochondria. To investigate the mechanism of mitochondrial staining, a new non-emissive compound, fac-[Re(CO)3(phen)L], with L = O2C(CH2)3((C5H5)Fe(C5H4), i.e., containing a ferrocenyl moiety, was synthetized and characterized (3). 3 shows the same mitochondrial accumulation pattern as 1 and 2. Emission of 3 can only be possible when ferrocene-containing ligand dissociates from the metal center to produce a species containing the luminescent fac[Re(CO)3(phen)]+ core. The release of ligands from the Re center was verified in vitro through the conjugation with model proteins. These findings suggest that the mitochondria accumulation of compounds 1–3 is due to the formation of luminescent fac-[Re(CO)3(phen)]+ products, which react with cellular matrix molecules giving secondary products and are uptaken into the negatively charged mitochondrial membranes. Thus, reported compounds feature a rare dissociation-driven mechanism of action with great potential for biological applications. | pl_PL |
dc.description.sponsorship | The X-ray single-crystal diffraction studies were carried out at the Biological and Chemical Research Centre, University of Warsaw, established within the project co-financed by European Union from the European Regional Development Fund under the Operational Programme ‘Innovative Economy’, 2007–2013. This study was also supported by the National Science Centre Poland MAESTRO grant-DEC-2012/04/A/ST5/00609 (D.T. and K.W.), which enabled the X-ray structural analysis to be performed. RC thanks the European Research Council (ERC) for support in the framework of the MSCA RISE Project no. 645628. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Molecules;22(5) | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | bioorganometallics | pl_PL |
dc.subject | rhenium complexes | pl_PL |
dc.subject | ferrocene | pl_PL |
dc.subject | confocal microscopy | pl_PL |
dc.subject | luminescence | pl_PL |
dc.subject | mitochondria staining | pl_PL |
dc.subject | phototoxicity | pl_PL |
dc.title | Mitochondria Targeting with Luminescent Rhenium(I) Complexes | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 17 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Chemical Sciences, University of Naples Federico II, Complesso Univ. di Monte Sant’ Angelo, Via Cintia, I-80126 Napoli, Italy | pl_PL |
dc.contributor.authorAffiliation | Department of Chemical Sciences, University of Naples Federico II, Complesso Univ. di Monte Sant’ Angelo, Via Cintia, I-80126 Napoli, Italy | pl_PL |
dc.contributor.authorAffiliation | Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Napoli, Italy | pl_PL |
dc.contributor.authorAffiliation | CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, Via Mezzocannone 16, I-80134 Napoli, Italy | pl_PL |
dc.contributor.authorAffiliation | CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16, I-80134 Napoli, Italy | pl_PL |
dc.contributor.authorAffiliation | Department of Technology of Organic Synthesis, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia | pl_PL |
dc.contributor.authorAffiliation | Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany | pl_PL |
dc.contributor.authorAffiliation | Lehrstuhl für Anorganische Chemie I, University of Bayreuth, D-95440 Bayreuth, Germany | pl_PL |
dc.contributor.authorAffiliation | Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany | pl_PL |
dc.identifier.eissn | 1420-3049 | |
dc.references | Yersin, H.; Rausch, A.F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 2011, 255, 2622–2652. | pl_PL |
dc.references | Zhao, Q.; Li, F.; Huang, C. Phosphorescent chemosensors based on heavy-metal complexes. Chem. Soc. Rev. 2010, 39, 3007–3030. | pl_PL |
dc.references | Ashford, D.L.; Gish, M.K.; Vannucci, A.K.; Brennaman, M.K.; Templeton, J.L.; Papanikolas, J.M.; Meyer, T.J. Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chem. Rev. 2015, 115, 13006–13049. | pl_PL |
dc.references | Fernández-Moreira, V.; Thorp-Greenwood, F.L.; Coogan, M.P. Application of d6 transition metal complexes in fluorescence cell imaging. Chem. Commun. 2010, 46, 186–202. | pl_PL |
dc.references | Baggaley, E.; Weinstein, J.A.; Williams, J.A.G. Lighting the way to see inside the live cell with luminescent transition metal complexes. Coord. Chem. Rev. 2012, 256, 1762–1785. | pl_PL |
dc.references | Lo, K.K.-W. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents. Acc. Chem. Res. 2015, 48, 2985–2995. | pl_PL |
dc.references | Thorp-Greenwood, F.L. An Introduction to Organometallic Complexes in Fluorescence Cell Imaging: Current Applications and Future Prospects. Organometallics 2012, 31, 5686–5692. | pl_PL |
dc.references | Coogan, M.P.; Fernández-Moreira, V. Progress with, and prospects for, metal complexes in cell imaging. Chem. Commun. 2014, 50, 384–399. | pl_PL |
dc.references | Lo, K.K.-W.; Choi, A.W.-T.; Law, W.H.-T. Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. Dalton Trans. 2012, 41, 6021–6047. | pl_PL |
dc.references | Ma, D.-L.; He, H.-Z.; Leung, K.-H.; Chan, D.S.-H.; Leung, C.-H. Bioactive Luminescent Transition-Metal Complexes for Biomedical Applications. Angew. Chem. Int. Ed. 2013, 52, 7666–7682. | pl_PL |
dc.references | Gasser, G.; Ott, I.; Metzler-Nolte, N. Organometallic anticancer compounds. J. Med. Chem. 2011, 54, 3–25. | pl_PL |
dc.references | Patra, M.; Gasser, G. Organometallic Compounds: An Opportunity for Chemical Biology? ChemBioChem 2012, 13, 1232–1252. | pl_PL |
dc.references | ChemBioChem 2012, 13, 1232–1252. [Google Scholar] [CrossRef] [PubMed] Bartholomä, M.; Valliant, J.; Maresca, K.P.; Babich, J.; Zubieta, J. Single amino acid chelates (SAAC): A strategy for the design of technetium and rhenium radiopharmaceuticals. Chem. Commun. 2009, 493–512. | pl_PL |
dc.references | Clède, S.; Policar, C. Metal–Carbonyl Units for Vibrational and Luminescence Imaging: Towards Multimodality. Chem. Eur. J. 2015, 21, 942–958. | pl_PL |
dc.references | Giordano, P.J.; Wrighton, M.S. The nature of the lowest excited state in fac-tricarbonylhalobis(4-phenylpyridine)rhenium(I) and fac-tricarbonylhalobis(4,4′-bipyridine)rhenium(I): Emissive organometallic complexes in fluid solution. J. Am. Chem. Soc. 1979, 101, 2888–2897. | pl_PL |
dc.references | Záliš, S.; Milne, C.J.; El Nahhas, A.; Blanco-Rodríguez, A.M.; van der Veen, R.M.; Vlček, A., Jr. Re and Br X-ray Absorption Near-Edge Structure Study of the Ground and Excited States of [ReBr(CO)3(bpy)] Interpreted by DFT and TD-DFT Calculations. Inorg. Chem. 2013, 52, 5775–5785. | pl_PL |
dc.references | Czerwieniec, R.; Kapturkiewicz, A.; Lipkowski, J.; Nowacki, J. Re(I)(tricarbonyl)+ complexes with the 2-(2-pyridyl)-N-methyl-benzimidazole, 2-(2-pyridyl)benzoxazole and 2-(2-pyridyl)benzothiazole ligands—Syntheses, structures, electrochemical and spectroscopic studies. Inorg. Chim. Acta 2005, 358, 2701–2710. | pl_PL |
dc.references | Kirgan, R.A.; Sullivan, B.P.; Rillema, D.P. Photochemistry and photophysics of coordination compounds: Rhenium. Top. Curr. Chem. 2007, 281, 45–100. | pl_PL |
dc.references | Stephenson, K.A.; Banerjee, S.R.; Besanger, T.; Sogbein, O.O.; Levadala, M.K.; McFarlane, N.; Lemon, J.A.; Boreham, D.R.; Maresca, K.P.; Brennan, J.D. Bridging the Gap between in Vitro and in Vivo Imaging: Isostructural Re and 99mTc Complexes for Correlating Fluorescence and Radioimaging Studies. J. Am. Chem. Soc. 2004, 126, 8598–8599. | pl_PL |
dc.references | Amoroso, A.J.; Arthur, R.J.; Coogan, M.P.; Court, J.B.; Fernández-Moreira, V.; Hayes, A.J.; Lioyd, D.; Millet, C.; Pope, S.J.A. 3-Chloromethylpyridyl bipyridine fac-tricarbonyl rhenium: A thiol-reactive luminophore for fluorescence microscopy accumulates in mitochondria. New. J. Chem. 2008, 32, 1097–1102. | pl_PL |
dc.references | Fernández-Moreira, V.; Thorp-Greenwood, F.L.; Amoroso, A.J.; Cable, J.; Court, J.B.; Gray, V.; Hayes, A.J.; Jenkins, R.J.; Kariuki, B.M.; Lloyd, D. Uptake and localisation of rhenium fac-tricarbonyl polypyridyls in fluorescent cell imaging experiments. Org. Biomol. Chem. 2010, 8, 3888–3901. | pl_PL |
dc.references | Balasingham, R.G.; Thorp-Greenwood, F.L.; Williams, C.F.; Coogan, M.P.; Pope, S.J.A. Biologically Compatible, Phosphorescent Dimetallic Rhenium Complexes Linked through Functionalized Alkyl Chains: Syntheses, Spectroscopic Properties, and Applications in Imaging Microscopy. Inorg. Chem. 2012, 51, 1419–1426. | pl_PL |
dc.references | Langdon-Jones, E.E.; Symonds, N.O.; Yates, S.E.; Hayes, A.J.; Lloyd, D.; Williams, R.; Coles, S.J.; Horton, P.N.; Pope, S.J.A. Fluorescent Rhenium-Naphthalimide Conjugates as Cellular Imaging Agents. Inorg. Chem. 2014, 53, 3788–3797. | pl_PL |
dc.references | Clède, S.; Lambert, F.; Saint-Fort, R.; Plamont, M.-P.; Bertrand, H.; Vessières, A.; Policar, C. Influence of the Side-Chain Length on the Cellular Uptake and the Cytotoxicity of Rhenium Triscarbonyl Derivatives: A Bimodal Infrared and Luminescence Quantitative Study. Chem. Eur. J. 2014, 20, 8714–8722. | pl_PL |
dc.references | Ferri, E.; Donghi, D.; Panigati, M.; Prencipe, G.; D’Alfonso, L.; Zanoni, I.; Baldoli, C.; Maiorana, S.; D’Alfonso, G.; Licandro, E. Luminescent conjugates between dinuclear rhenium(I) complexes and peptide nucleic acids (PNA) for cell imaging and DNA targeting. Chem. Commun. 2010, 46, 6255–6257. | pl_PL |
dc.references | Funkhouser, J. Reintroducing pharma: Theranostic revolution. Curr. Drug Discov. 2002, 2, 17–19 | pl_PL |
dc.references | Celli, J.P.; Spring, B.Q.; Rizvi, I.; Evans, C.I.; Samkoe, K.S.; Verma, S.; Pogue, B.W.; Hasan, T. Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization. Chem. Rev. 2010, 110, 2795–2838. | pl_PL |
dc.references | Juarranz, A.; Jaèn, P.; Sanz-Rodriguez, F.; Cuevas, J.; González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol. 2008, 10, 148–154. | pl_PL |
dc.references | Taub, A.F. Photodynamic Therapy: Other Uses. Dermatol. Clin. 2007, 25, 101–109. | pl_PL |
dc.references | Lo, K.K.-W.; Louie, M.-W.; Sze, K.-S.; Lau, J.S.-Y. Rhenium(I) Polypyridine Biotin Isothiocyanate Complexes as the First Luminescent Biotinylation Reagents: Synthesis, Photophysical Properties, Biological Labeling, Cytotoxicity, and Imaging Studies. Inorg. Chem. 2008, 47, 602–611. | pl_PL |
dc.references | Louie, M.-W.; Liu, H.-W.; Lam, M.H.-C.; Lam, Y.-W.; Lo, K.K.-W. Luminescent Rhenium(I) Polypyridine Complexes Appended with an α-d-Glucose Moiety as Novel Biomolecular and Cellular Probes. Chem. Eur. J. 2011, 17, 8304–8308. | pl_PL |
dc.references | Zhang, K.Y.; Tso, K.K.-S.; Louie, M.-W.; Liu, H.-W.; Lo, K.K.-W. A Phosphorescent Rhenium(I) Tricarbonyl Polypyridine Complex Appended with a Fructose Pendant That Exhibits Photocytotoxicity and Enhanced Uptake by Breast Cancer Cells. Organometallics 2013, 32, 5098–5102. | pl_PL |
dc.references | Viola-Villegas, N.; Rabideau, A.E.; Cesnavicious, J.; Zubieta, J.; Doyle, R.P. Targeting the Folate Receptor (FR): Imaging and Cytotoxicity of ReI Conjugates in FR-Overexpressing Cancer Cells. ChemMedChem 2008, 3, 1387–1394. | pl_PL |
dc.references | Viola-Villegas, N.; Rabideau, A.E.; Bartholom, M.; Zubieta, J.; Doyle, R.P. Targeting the Cubilin Receptor through the Vitamin B12 Uptake Pathway: Cytotoxicity and Mechanistic Insight through Fluorescent Re(I) Delivery. J. Med. Chem. 2009, 52, 5253–5261. | pl_PL |
dc.references | Kitanovic, I.; Can, S.; Alborzinia, H.; Kitanovic, A.; Pierroz, V.; Leonidova, A.; Pinto, A.; Spingler, B.; Ferrari, S.; Molteni, R.; et al. A Deadly Organometallic Luminescent Probe: Anticancer Activity of a ReI Bisquinoline Complex. Chem. Eur. J. 2014, 20, 2496–2507. | pl_PL |
dc.references | Leonidova, A.; Pierroz, V.; Rubbiani, R.; Heier, J.; Ferrari, S.; Gasser, G. Towards cancer cell-specific phototoxic organometallic rhenium(I) complexes. Dalton. Trans. 2014, 43, 4287–4294. | pl_PL |
dc.references | Leonidova, A.; Pierroz, V.; Rubbiani, R.; Lan, Y.; Schmitz, A.G.; Kaech, A.; Sigel, R.K.O.; Ferrari, S.; Gasser, G. Photo-induced uncaging of a specific Re(I) organometallic complex in living cells. Chem. Sci. 2014, 5, 4044–4056. | pl_PL |
dc.references | Frey-Forgues, S.; Delavaux-Nicot, B. Ferrocene and ferrocenyl derivatives in luminescent systems. J. Photochem. Photobiol. A Chem. 2000, 132, 137–159. | pl_PL |
dc.references | Feliz, M.; Ferraudi, G. Charge-Transfer Processes in (4-Nitrobenzoate)Re(CO)3(azine)2 Complexes. Competitive Reductions of 4-Nitrobenzoate and Azine in Thermally and Photochemically Induced Redox Processes. Inorg. Chem. 1998, 37, 2806–2810. | pl_PL |
dc.references | Juliarena, M.P.; Ruiz, G.T.; Wolcan, E.; Lezna, R.O.; Feliz, M.R.; Ferraudi, G.; Guerrero, J. Inhibition of the fac-(RCO2)ReI(CO3)(bis-azine) Photodecarboxylation of the Carboxylate Ligand, RCO2-, When R Is a Strongly Electron Donating Group: Thermal and Photochemical Properties of Complexes Where R = Ferrocene, 4-(Dimethylamino)benzyl. Organometallics 2007, 26, 272–280. | pl_PL |
dc.references | Juliarena, M.P.; Lezna, R.O.; Ruiz, G.T.; Féliz, M.R.; Ferraudi, G.; Wolcan, E. On the nature of the redox products of 4-((CH3)2N)C6H4–CO2−and 4-((CH3)2N)C6H4–CO2–Re(CO)3(1,10-phenanthroline): A spectroelectrochemical, pulse radiolysis and flash photochemical study. Polyhedron 2008, 27, 1471–1478. | pl_PL |
dc.references | Cuesta, L.; Hevia, E.; Morales, D.; Pérez, J.; Riera, L.; Miguel, D. Reactivity of Molybdenum and Rhenium Hydroxo Complexes toward Organic Electrophiles: Reactions that Afford Carboxylato Products. Organometallics 2006, 25, 1717–1722. | pl_PL |
dc.references | Maggioni, D.; Fenili, F.; D’Alfonso, L.; Donghi, D.; Panigati, M.; Zanoni, I.; Marzi, R.; Manfredi, A.; Ferruti, P.; D’Alfonso, G.; et al. Luminescent Rhenium and Ruthenium Complexes of an Amphoteric Poly(amidoamine) Functionalized with 1,10-Phenanthroline. Inorg. Chem. 2012, 51, 12776–12788 | pl_PL |
dc.references | Chu, W.-K.; Ko, C.-C.; Chan, K.-C.; Yiu, S.-M.; Wong, F.-L.; Lee, C.-S.; Roy, V.A.L. A Simple Design for Strongly Emissive Sky-Blue Phosphorescent Neutral Rhenium Complexes: Synthesis, Photophysics, and Electroluminescent Devices. Chem. Mat. 2014, 26, 2544–2550. | pl_PL |
dc.references | Cuesta, L.; Huertos, M.A.; Morales, D.; Pérez, J.; Riera, L.; Riera, V.; Miguel, D.; Menéndez-Velázquez, A.; Garcia-Granda, S. Synthesis, Structure, and Reactivity of Mononuclear Re(I) Oximato Complexes. Inorg. Chem. 2007, 46, 2836–2845. | pl_PL |
dc.references | Kowalski, K.; Szczupak, Ł.; Bernaś, T.; Czerwieniec, R. Luminescent rhenium(I)–chromone bioconjugate: Synthesis, photophysical properties, and confocal luminescence microscopy investigation. J. Organomet. Chem. 2015, 782, 124–130. | pl_PL |
dc.references | Yamaguchi, Y.; Ding, W.; Sanderson, C.T.; Borden, M.L.; Morgan, M.J.; Kutal, C. Electronic structure, spectroscopy, and photochemistry of group 8 metallocenes. Coord. Chem. Rev. 2007, 251, 515–524 | pl_PL |
dc.references | Dunn, W.K.; Kamocka, M.M.; McDonald, H.J. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011, 300, C723–C742. | pl_PL |
dc.references | Benz, R.; McLaughlin, S. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys. J. 1983, 41, 381–398. | pl_PL |
dc.references | Bernaś, T.; Dobrucki, J. Backscattered light confocal imaging of intracellular MTT-formazan crystals. Micro Res. Technol. 2004, 64, 126–134. | pl_PL |
dc.references | Messori, L.; Marzo, T.; Gabbiani, C.; Valdes, A.A.; Quiroga, A.G.; Merlino, A. Peculiar Features in the Crystal Structure of the Adduct Formed between cis-PtI2(NH3)2 and Hen Egg White Lysozyme. Inorg. Chem. 2013, 52, 13827–13829. | pl_PL |
dc.references | Messori, L.; Merlino, A. Cisplatin Binding to Proteins: Molecular Structure of the Ribonuclease A Adduct. Inorg. Chem. 2014, 53, 3929–3931. | pl_PL |
dc.references | Messori, L.; Merlino, A. Ruthenium metalation of proteins: The X-ray structure of the complex formed between NAMI-A and hen egg white lysozyme. Dalton Trans. 2014, 43, 6128–6131. | pl_PL |
dc.references | Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. | pl_PL |
dc.references | Schaefer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. | pl_PL |
dc.references | Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. | pl_PL |
dc.references | Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. | pl_PL |
dc.references | Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian09W, V. 8.0. Gaussian, Inc.: Wallingford, CT, USA, 2009. | pl_PL |
dc.references | Clark, R.C.; Reid, J.S. The analytical calculation of absorption in multifaceted crystals. Acta Cryst. Sect. A 1995, 51, 887–897. | pl_PL |
dc.references | CrysAlis CCD; CrysAlis RED; Oxford Diffraction Ltd.: Yarnton, UK, 2008. | pl_PL |
dc.references | Sheldrick, G.M. A short history of SHELX. Acta Cryst. Sect. A 2008, 64, 112–122. | pl_PL |
dc.references | Farrugia, L.J. ORTEP-3 for Windows—A version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst. 1997, 30, 565. | pl_PL |
dc.references | To, M.-S.; Aromataris, E.C.; Castro, J.; Roberts, M.L.; Barritt, G.J.; Rychkov, G.Y. Mitochondrial uncoupler FCCP activates proton conductance but does not block store-operated Ca2+ current in liver cells. Arch. Biochem. Biophys. 2010, 495, 152–158. | pl_PL |
dc.identifier.doi | 10.3390/molecules22050809 | |
dc.relation.volume | 809 | pl_PL |
dc.discipline | nauki chemiczne | pl_PL |