dc.contributor.author | Pieczonka, Adam | |
dc.contributor.author | Rachwalski, Michał | |
dc.contributor.author | Leśniak, Stanisław | |
dc.contributor.author | Marciniak, Lena | |
dc.date.accessioned | 2021-10-22T08:13:06Z | |
dc.date.available | 2021-10-22T08:13:06Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Pieczonka, A.M.; Marciniak, L.; Rachwalski, M.; Leśniak, S. Enantiodivergent Aldol Condensation in the Presence of Aziridine/Acid/Water Systems. Symmetry 2020, 12, 930. https://doi.org/10.3390/sym12060930 | pl_PL |
dc.identifier.issn | 2073-8994 | |
dc.identifier.uri | http://hdl.handle.net/11089/39512 | |
dc.description.abstract | A series of novel chiral imines was synthesized from corresponding aldehydes and
1-(2-aminoalkyl)aziridines with good chemical yields. Such imines were tested as catalysts in the
direct asymmetric aldol reaction between aromatic aldehydes and acetone/cyclohexanone in the
presence of catalytic amounts of water and an acidic additive. The corresponding aldol products were
formed in excellent yields and with very high enantioselectivities (98% and 99% ee, respectively). | pl_PL |
dc.description.sponsorship | This research was funded by the National Science Centre (NCN), grant number 2013/11/D/ST5/02911,
which was awarded to A.M.P. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Symmetry;12 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | asymmetric synthesis | pl_PL |
dc.subject | enantiodivergent aldol condensation | pl_PL |
dc.subject | diastereodivergent process | pl_PL |
dc.subject | aziridines | pl_PL |
dc.subject | chiral imines | pl_PL |
dc.subject | enantioselectivity | pl_PL |
dc.title | Enantiodivergent Aldol Condensation in the Presence of Aziridine/Acid/Water Systems | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 13 | pl_PL |
dc.contributor.authorAffiliation | Department of Organic and Applied Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Organic and Applied Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Organic and Applied Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 91-403 Lodz, Poland | pl_PL |
dc.references | Pellissier, H. Asymmetric organocatalysis. Tetrahedron 2007, 63, 9267–9331. | pl_PL |
dc.references | Trost, B.M.; Brindle, C.S. The direct catalytic asymmetric aldol reaction. Chem. Soc. Rev. 2010, 39, 1600–1632 | pl_PL |
dc.references | List, B.; Lerner, R.A.; Barbas, C.F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395–2396. | pl_PL |
dc.references | Guillena, G.; Nájera, C.; Ramón, D.J. Enantioselective direct aldol reaction: The blossoming of modern organocatalysis. Tetrahedron Asymmetry 2007, 18, 2249–2293. | pl_PL |
dc.references | Rosenberger, M.; McDougal, P.; Bahr, J. Reductive alkylation/arylation of arylcarbinols and ketones with organosilicon compounds. J. Org. Chem. 1982, 47, 2130–2134. | pl_PL |
dc.references | Akhtar, M.; Weedon, B.C.L. Carotenoids and related compounds. Part VIII. Novel syntheses of echinenone and canthaxanthin. J. Chem. Soc. 1959, 4058–4062 | pl_PL |
dc.references | Warren, C.K.; Weedon, B.C.L. Carotenoids and related compounds. Part VII. Synthesis of canthaxanthin and echinenone. J. Chem. Soc. 1958, 3986–3993. | pl_PL |
dc.references | Matsumoto, H.; Ikoma, Y.; Kato, M.; Kuniga, T.; Nakajima, N.; Yoshida, T. Quantification of Carotenoids in Citrus Fruit by LC-MS and Comparison of Patterns of Seasonal Changes for Carotenoids among Citrus Varieties. J. Agric. Food Chem. 2007, 55, 2356–2368 | pl_PL |
dc.references | Młynarski, J.; Ba´s, S. Catalytic asymmetric aldol reactions in aqueous media – a 5 year update. Chem. Soc. Rev. 2014, 43, 577–587. | pl_PL |
dc.references | Beletskaya, I.P.; Nájera, C.; Yus, M. Stereodivergent Catalysis. Chem. Rev. 2018, 118, 5080–5200 | pl_PL |
dc.references | Krautwald, S.; Carreira, E.M. Stereodivergence in Asymmetric Catalysis. J. Am. Chem. Soc. 2017, 139, 5627–5639 | pl_PL |
dc.references | Bihani, M.; Zhao, J.C.G. Advances in Asymmetric Diastereodivergent Catalysis. Adv. Synth. Catal. 2017, 359, 534–575. | pl_PL |
dc.references | Martínez-Castañeda, A.; Rodríguez-Solla, H.; Concellón, C.; Amo, V. Switching Diastereoselectivity in Proline-Catalyzed Aldol Reactions. J. Org. Chem. 2012, 77, 10375–10381. | pl_PL |
dc.references | Pinaka, A.; Vougioukalakis, G.C.; Dimotikali, D.; Yannakopoulou, E.; Chankvetadze, B.; Papadopoulos, K. Green Asymmetric Synthesis: β -Amino Alcohol-Catalyzed Direct Asymmetric Aldol Reactions in Aqueous Micelles. Chirality 2013, 25, 119–125. | pl_PL |
dc.references | Paradowska, J.; Pasternak, M.; Gut, M.; Gryzło, B.; Młynarski, J. Direct Asymmetric Aldol Reactions Inspired by Two Types of Natural Aldolases: Water-Compatible Organocatalysts and ZnII Complexes. J. Org. Chem. 2012, 77, 173–187. | pl_PL |
dc.references | Pieczonka, A.M.; Jarzy ´nski, S.; Wujkowska, Z.; Le´sniak, S.; Rachwalski, M. Zinc(II) mediated asymmetric aldol condensation catalyzed by chiral aziridine ligands. Tetrahedron Lett. 2015, 56, 6506–6507. | pl_PL |
dc.references | Pieczonka, A.M.; Le´sniak, S.; Rachwalski, M. Direct asymmetric aldol condensation catalyzed by aziridine semicarbazide zinc(II) complexes. Tetrahedron Lett. 2014, 55, 2373–2375. | pl_PL |
dc.references | Wujkowska, Z.; Strojewska, A.; Pieczonka, A.M.; Le´sniak, S.; Rachwalski, M. Highly Enantioselective Asymmetric Direct Aldol Reaction Promoted by Aziridine Amides Constructed on Chiral Terpene Scaffold. Chirality 2017, 29, 213–220. | pl_PL |
dc.references | Rachwalski, M.; Kaczmarczyk, S.; Le´sniak, S.; Kiełbasi ´nski, P. Highly Efficient Asymmetric Simmons–Smith Cyclopropanation Promoted by Chiral Heteroorganic Aziridinyl Ligands. ChemCatChem 2014, 6, 873–875. | pl_PL |
dc.references | Rachwalski, M. Limonene oxide derived aziridinyl alcohols as highly efficient catalysts for asymmetric additions of organozinc species to aldehydes. Tetrahedron Asymmetry 2014, 25, 219–223. | pl_PL |
dc.references | Jarzy ´nski, S.; Le´sniak, S.; Pieczonka, A.M.; Rachwalski, M. N-Trityl-aziridinyl alcohols as highly efficient chiral catalysts in asymmetric additions of organozinc species to aldehydes. Tetrahedron Asymmetry 2015, 26, 35–40. | pl_PL |
dc.references | Kowalczyk, A.; Pieczonka, A.M.; Rachwalski, M.; Lesniak, S.; Staczek, P. Synthesis and Evaluation of Biological Activities of Aziridine Derivatives of Urea and Thiourea. Molecules 2018, 23, 45 | pl_PL |
dc.references | Pieczonka, A.M.; Misztal, E.; Rachwalski, M.; Le´sniak, S. Synthesis of chiral 1-(2-aminoalkyl)aziridines via the self-opening reaction of aziridine. Arkivoc 2017, 2, 223–234. | pl_PL |
dc.references | Pieczonka, A.M.; Le´sniak, S.; Rachwalski, M. Chiral imines prepared from 1-(2-aminoalkyl) aziridines as novel chiral shifts reagents for efficient recognition of acids. Tetrahedron 2018, 74, 1571–1579. | pl_PL |
dc.references | Chen, X.; Lin, C.; Du, H.; Xu, J. Efficient Direct Synthesis of Aziridine-Containing Chiral Tridentate Ligands by the Iminium-Mediated Self-Ring Opening Reaction of Enantiopure Aziridines and Salicylaldehydes. Adv. Synth. Catal. 2019, 361, 1647–1661. | pl_PL |
dc.references | Shah, E.; Soni, H.P. Inducing chirality on ZnS nanoparticles for asymmetric aldol condensation reactions. RSC Adv. 2013, 3, 17453–17461. | pl_PL |
dc.references | Bayat, S.; Tejo, B.A.; Salleh, A.B.; Abdmalek, E.; Normi, Y.M.; Rahman, B.A. Various Polar Tripeptides as Asymmetric Organocatalyst in Direct Aldol Reactions in Aqueous Media. Chirality 2013, 25, 726–734. | pl_PL |
dc.references | Simon, A.; Lam, Y.; Houk, K.N. Transition States of Vicinal Diamine-Catalyzed Aldol Reactions. J. Am. Chem. Soc. 2016, 138, 503–506. | pl_PL |
dc.references | Zhou, Y.; Shan, Z. (R)- or (S)-Bi-2-naphthol assisted, l-proline catalyzed direct aldol reaction. Tetrahedron Asymmetry 2006, 17, 1671–1677. | pl_PL |
dc.references | Reddy, B.V.S.; Bhavani, K.; Raju, B.V.; Yadav, J.S. A novel trifunctional organocatalyst for the asymmetric aldol reaction: A facile enantioselective synthesis of β-hydroxyketones. Tetrahedron Asymmetry 2011, 22, 881–886. | pl_PL |
dc.references | Qin, L.; Zhang, L.; Jin, Q.; Zhang, J.; Han, B.; Liu, M. Supramolecular Assemblies of Amphiphilic L -Proline Regulated by Compressed CO2 as a Recyclable Organocatalyst for the Asymmetric Aldol Reaction. Angew. Chem. Int. Ed. 2013, 52, 7761–7765. | pl_PL |
dc.references | Ying, A.; Liu, S.; Li, Z.; Chen, G.; Yang, J.; Yan, H.; Xu, S. Magnetic Nanoparticles-Supported Chiral Catalyst with an Imidazolium Ionic Moiety: An Efficient and Recyclable Catalyst for Asymmetric Michael and Aldol Reactions. Adv. Synth. Catal. 2016, 358, 2116–2125. | pl_PL |
dc.references | Li, L.; Gou, S.; Liu, F. Highly stereoselective anti-aldol reactions catalyzed by simple chiral diamines and their unique application in configuration switch of aldol products. Tetrahedron Lett. 2013, 54, 6358–6362. | pl_PL |
dc.references | Qu, C.; Zhao, W.; Zhang, L.; Cui, Y. Preparation of Immobilized L-Prolinamide Via Enzymatic Polymerization of Phenolic L-Prolinamide and Evaluation of Its Catalytic Performance for Direct Asymmetric Aldol Reaction. Chirality 2014, 26, 209–213. | pl_PL |
dc.references | Chen, G.; Fu, X.; Wu, C.; Li, C. A new chiral primary–tertiary diamine-Brønsted acid salt organocatalyst for the highly enantioselective direct anti-aldol and syn-Mannich reactions. Res. Chem. Intermed. 2013, 39, 1069–1087. | pl_PL |
dc.references | Martínez, R.; Berbegal, L.; Guillena, G.; Ramón, D.J. Bio-renewable enantioselective aldol reaction in natural deep eutectic solvents. Green Chem. 2016, 18, 1724–1730. | pl_PL |
dc.identifier.doi | 10.3390/sym12060930 | |
dc.relation.volume | 930 | pl_PL |
dc.discipline | nauki chemiczne | pl_PL |