dc.contributor.author | Luoto, Tomi P. | |
dc.contributor.author | Kivilä, E. Henriikka | |
dc.contributor.author | Nevalainen, Liisa | |
dc.contributor.author | Kotrys, Bartosz | |
dc.contributor.author | Płóciennik, Mateusz | |
dc.contributor.author | Rantala, Marttiina V. | |
dc.date.accessioned | 2021-11-08T17:14:11Z | |
dc.date.available | 2021-11-08T17:14:11Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0138-0338 | |
dc.identifier.uri | http://hdl.handle.net/11089/39734 | |
dc.description.abstract | Independent Arctic records of temperature and precipitation from the same proxy archives
are rare. Nevertheless, they are important for providing detailed information on long-term climate
changes and temperature-precipitation relationships in the context of large-scale atmospheric
dynamics. Here, we used chironomid and cladoceran fossil assemblages to reconstruct summer airtemperature and water-level changes, during the past 400 years, in a small lake located in Finnish
Lapland. Temperatures remained persistently cold over the Little Ice Age (LIA), but increased in the
20th century. After a cooler phase in the 1970s, the climate rapidly warmed to the record-high
temperatures of the most recent decades. The lake-level reconstruction suggested persistently wet
conditions for the LIA, followed by a dry period between ~1910 and 1970 CE, when the lake
apparently became almost dry. Since the 1980s, the lake level has returned to a similar position as
during the LIA. The temperature development was consistent with earlier records, but a significant
local feature was found in the lake-level reconstruction – the LIA appears to have been continuously
wet, without the generally depicted dry phase during the 18th and 19th centuries. Therefore, the results
suggest local precipitation patterns and enforce the concept of spatially divergent LIA conditions. | pl_PL |
dc.description.sponsorship | This work was supported by the Emil Aaltonen Foundation
(T.P.L., grants numbers 160156, 170161, 180151), Kone Foundation (T.P.L., grant
number 090140) and Academy of Finland (L.N., grant numbers 287547, 308954).
Support for mobility by the EU Climate-KIC’s Pioneers into Practice program is also
appreciated. Help in the fieldwork was provided by Annukka Galkin and the Kevo
Research Station. We are grateful for Dr. János Korponai and an anonymous reviewer for
their constructive comments on the manuscript. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Polish Academy of Sciences; Committee on Polar Research | pl_PL |
dc.relation.ispartofseries | Polish Polar Research;41 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Arctic | pl_PL |
dc.subject | paleoclimate | pl_PL |
dc.subject | temperature | pl_PL |
dc.subject | Chironomidae | pl_PL |
dc.subject | Cladocera | pl_PL |
dc.subject | precipitation | pl_PL |
dc.title | Air temperature and water level inferences from northeastern Lapland (69°N) since the Little Ice Age | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 23-40 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland | pl_PL |
dc.contributor.authorAffiliation | Polish Geological Institute - National Research Institute, Pomeranian Branch in Szczecin, Wieniawskiego 20, 71-130 Szczecin, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Institute of Earth Surface Dynamics, University of Lausanne, Géopolis Building, UNIL Mouline-1015, Switzerland | pl_PL |
dc.identifier.eissn | 2081-8262 | |
dc.references | ANDERSSON S. and SCHONING K. 2010. Surface wetness and mire development during the late Holocene in central Sweden. Boreas 39: 749–760. | pl_PL |
dc.references | BROOKS S.J. 2006. Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quaternary Science Reviews 25: 1894–1910. | pl_PL |
dc.references | BROOKS S.J., LANGDON P.G. and HEIRI O. 2007. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quaternary Research Association: 276 pp. | pl_PL |
dc.references | CARTER T.R., FRONZEK S. and BÄRLUND I. 2004. FINSKEN: a framework for developing consistent global change scenarios for Finland in the 21st century. Boreal Environment Research 9: 91–107. | pl_PL |
dc.references | COHEN A.S. 2003. Paleolimnology: the history and evolution of lake systems. Oxford University Press, Oxford, New York: 528 pp. | pl_PL |
dc.references | COHEN J., FURTADO J.C., BARLOW M.A., ALEXEEV V.A. and CHERRY J.E. 2014. Arctic warming, increasing snow cover and widespread boreal winter cooling, Environmental Research Letters 7: 014007. | pl_PL |
dc.references | ENGELS S., MEDEIROS A.S., AXFORD Y., BROOKS S.J., HEIRI O., LUOTO T.P., NAZAROVA L., PORINCHU D.F., QUINLAN R. and SELF A.E. 2019. Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity. Global Change Biology, DOI: 10.1111/gcb.14862 (epub ahead of print). | pl_PL |
dc.references | ENGELS S., SELF A.E., LUOTO T.P., BROOKS S.J. and HELMENS K.F. 2014. A comparison of three Eurasian chironomid-climate calibration datasets on a W-E continentality gradient and the implications for quantitative temperature reconstructions. Journal of Paleolimnology 51: 529–547. | pl_PL |
dc.references | FRITZ S.C. 2008. Deciphering climatic history from lake sediments. Journal of Paleolimnology 39: 5–16. | pl_PL |
dc.references | FRYER G. 1974. Evolution and adaptive radiation in the Macrothricidae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Philosophical Transactions of the Royal Society of London B 269: 137–274. | pl_PL |
dc.references | HANSSEN-BAUER I., ACHBERGER C., BENESTAD R.E., CHEN D. and FØRLAND E.J. 2005. Statistical downscaling of climate scenarios over Scandinavia. Climate Research 29: 255–268. | pl_PL |
dc.references | HEIRI O., BROOKS S.J., BIRKS H.J.B. and LOTTER A.F. 2011. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quaternary Science Reviews 30: 3445–3456. | pl_PL |
dc.references | HELAMA S., LUOTO T.P., NEVALAINEN L. and EDVARDSSON J. 2017. Rereading a tree-ring database to illustrate depositional histories of subfossil trees. Palaeontologia Electronica 20.1.2A: 1–12. | pl_PL |
dc.references | HILL M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432. | pl_PL |
dc.references | HUNTINGTON T.G. 2006. Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology 319: 83–95. | pl_PL |
dc.references | JANSEN E., OVERPECK J., BRIFFA K.R., DUPLESSY J.-C., JOOS F., MASSON-DELMOTTE V., OLAGO D., OTTOBLIESNER, B. PELTIER W.R., RAHMSTORF S., RAMESH R., RAYNAUD D., RIND D., SOLOMINA O., VILLALBA R. and ZHANG D. 2007. Palaeoclimate. In: SOLOMON S., QIN D., MANNING M., CHEN Z., MARQUIS M., AVERYT K.B., TIGNOR M. and MILLER H.L. (eds) Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 433–497. | pl_PL |
dc.references | JYLHÄ K., TUOMENVIRTA H. and RUOSTEENOJA K. 2004. Climate change projections for Finland during the 21st century. Boreal Environment Research 9: 127–152. | pl_PL |
dc.references | KANSANEN P.H., JAAKKOLA T., KULMALA S. and SUUTARINEN R. 1991. Sedimentation and distribution of gamma-emitting radionuclides in bottom sediments of southern Lake Päijänne, Finland, after the Chernobyl accident. Hydrobiologia 222: 121–140. | pl_PL |
dc.references | KATTEL G.R., BATTARBEE R.W., MACKAY A.W. and BIRKS H.J.B. 2008. Recent ecological change in a remote Scottish mountain loch: an evaluation of a Cladocera-based temperature transferfunction. Palaeogeography, Palaeoclimatology, Palaeoecology 259: 51–76. | pl_PL |
dc.references | KORHOLA A., TIKKANEN M. and WECKSTRÖM J. 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a cladocera-lake depth transfer model. Journal of Paleolimnology 34: 175–190. | pl_PL |
dc.references | KORHOLA A., OLANDER H. and BLOM T. 2000. Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes. Journal of Paleolimnology 24: 43–54 | pl_PL |
dc.references | KULTTI S., NEVALAINEN L., LUOTO T.P. and SARMAJA-KORJONEN K. 2011. Subfossil chydorid (Cladocera, Chydoridae) ephippia as paleoenvironmental proxies: evidence from boreal and subarctic lakes in Finland. Hydrobiologia 676: 23–37. | pl_PL |
dc.references | KUREK, J., KOROSI, J. B., JEZIORSKI, A. and SMOL, J.P. 2010. Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. Journal of Paleolimnology 44: 603–612. | pl_PL |
dc.references | LINDEGAARD C. 1992. Zoobenthos ecology of Thingvallavatn: vertical distribution, abundance, population dynamics and production. Oikos 64: 257–304. | pl_PL |
dc.references | LINDERHOLM H.W., NICOLLE M., FRANCUS P., GAJEWSKI K., HELAMA S., KORHOLA A., SOLOMINA O., YU Z., ZHANG P., D’ANDREA W.J., DEBRET M., DIVINE D., GUNNARSON B.E., LOADER N.J., MASSEI N., SEFTIFGEN K., THOMAS E.K., WERNER J., ANDERSSON S., BERNTSSON A., LUOTO T.P., NEVALAINEN L., SAARNI S. and VÄLIRANTA M. 2018. Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges. Climate of the Past 14: 73–514 | pl_PL |
dc.references | LOTTER A.F., WALKER I.R., BROOKS S.J. and HOFMANN W. 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America. Quaternary Science Reviews 18: 717–735. | pl_PL |
dc.references | LUOTO T.P. 2013. How cold was the Little Ice Age? A proxy-based reconstruction from Finland applying modern analogues of fossil midge assemblages. Environmental Earth Sciences 68: 1321–1329. | pl_PL |
dc.references | LUOTO T.P. 2012. Intra-lake patterns of aquatic insect and mite remains. Journal of Paleolimnology 47: 141–157. | pl_PL |
dc.references | LUOTO T.P. 2010. Hydrological change in lakes inferred from midge assemblages through use of an intralake calibration set. Ecological Monographs 80: 303–329. | pl_PL |
dc.references | LUOTO T.P. 2009. Subfossil Chironomidae (Insecta: Diptera) along a latitudinal gradient in Finland: development of a new temperature inference model. Journal of Quaternary Science 24: 150–158. | pl_PL |
dc.references | LUOTO T.P. and HELAMA S. 2010. Palaeoclimatological and palaeolimnological records from fossil midges and tree-rings: the role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age. Quaternary Science Reviews 29: 2411–2423. | pl_PL |
dc.references | LUOTO T.P. and NEVALAINEN L. 2018. Temperature-precipitation relationship of the Common Era in northern Europe. Theoretical and Applied Climatology 132: 933–938. | pl_PL |
dc.references | LUOTO T.P. and NEVALAINEN L. 2013. Long-term water temperature reconstructions from mountain lakes with different catchment and morphometric features. Scientific Reports 3:2488. | pl_PL |
dc.references | LUOTO T.P., KOTRYS B. and PŁÓCIENNIK M. 2019. East European chironomid-based calibration model for past summer temperature reconstructions. Climate Research 77: 63–76. | pl_PL |
dc.references | LUOTO T.P., KIVILÄ E.H., RANTALA M.V. and NEVALAINEN L. 2017. Characterization of the Medieval Climate Anomaly, Little Ice Age and recent warming in northern Lapland. International Journal of Climatology 37: 1257–1266. | pl_PL |
dc.references | LUOTO T.P., RANTALA M.V., GALKIN A., RAUTIO M. and NEVALAINEN L. 2016. Environmental determinants of chironomid communities in remote northern lakes across the treeline – Implications for climate change assessments. Ecological Indicators 61: 991–999. | pl_PL |
dc.references | LUOTO T.P., NEVALAINEN L., KULTTI S. and SARMAJA-KORJONEN K. 2015. Quantitative palaeotemperature estimates based on fossil chydorid ephippia: calibration and validation of a novel method for northern lakes. Journal of Quaternary Science 30: 736–742. | pl_PL |
dc.references | LUOTO T.P., KAUKOLEHTO M. and NEVALAINEN L. 2014. The relationship between water and air temperature in chironomid-based paleoclimate reconstructions: Records from boreal and subarctic Finland. The Holocene 24: 1584–1590. | pl_PL |
dc.references | LUOTO T.P., HELAMA S. and NEVALAINEN L. 2013. Stream flow intensity of the Saavanjoki River, eastern Finland, during the past 1500 years reflected by mayfly and caddisfly mandibles in adjacent lake sediments. Journal of Hydrology 476: 147–153. | pl_PL |
dc.references | MACDONALD G., FELZER B., FINNEY B. and FORMAN S. 2000. Holocene lake sediment records of Arctic hydrology. Journal of Paleolimnology 24: 1–13. | pl_PL |
dc.references | MANN M.E., ZHANG Z., RUTHERFORD S., BRADLEY R.S., HUGHES M.K., SHINDELL D., AMMANN C., FALUVEGI G. and NI F. 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326: 1256–1260. | pl_PL |
dc.references | MATSKOVSKY V. and HELAMA S. 2016. Direct transformation of tree-ring measurements into palaeoclimate reconstructions in three-dimensional space. The Holocene 26: 439–449. | pl_PL |
dc.references | MCKAY N.P. and KAUFMAN D.S. 2014. An extended Arctic proxy temperature database for the past 2,000 years. Scientific Data 1: 140026. | pl_PL |
dc.references | MOBERG A., SONECHKIN D.M., HOLMGREN K., DATSENKO N.M. and KARLÉN W. 2005. Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature 433: 613–617. | pl_PL |
dc.references | NEVALAINEN L. 2012. Distribution of benthic microcrustaceans along a water depth gradient in an Austrian Alpine lake–Sedimentary evidence for niche separation. Limnologica 42: 65–71. | pl_PL |
dc.references | NEVALAINEN L. 2011. Intra-lake heterogeneity of sedimentary cladoceran (Crustacea) assemblages forced by local hydrology. Hydrobiologia 676: 9–22. | pl_PL |
dc.references | NEVALAINEN L., KIVILÄ E.H., RANTALA M.V., LUOTO T.P. and VAN DAMME K. 2019. A hidden species becoming visible: biogeography and ecology of Rhynchotalona latens (Cladocera, Anomopoda, Chydoridae). Hydrobiologia 837: 47–59. | pl_PL |
dc.references | NEVALAINEN L., HELAMA S. and LUOTO T.P. 2013. Hydroclimatic variations over the last millennium in eastern Finland disentangled by fossil Cladocera. Palaeogeography, Palaeoclimatology, Palaeoecology 378: 13–21. | pl_PL |
dc.references | NEVALAINEN L., SARMAJA-KORJONEN K. and LUOTO T.P. 2011. Sedimentary Cladocera as indicators of past water-level changes in shallow northern lakes. Quaternary Research 75: 430–437. | pl_PL |
dc.references | OVERLAND J.E. 2014. Atmospheric Science: Long-range linkage. Nature Climate Change 4: 11–12. | pl_PL |
dc.references | PAWŁOWSKI D., BORÓWKA R.K., KOWALEWSKI G., LUOTO T.P., MILECKA K., NEVALAINEN L., OKUPNY D., PŁÓCIENNIK M., WOSZCZYK M., TOMKOWIAK J. and ZIELIŃSKI T. 2016a. The response of flood-plain ecosystems to the Late Glacial and Early Holocene hydrological changes: A case study from a small Central European river valley. Catena 147: 411–428. | pl_PL |
dc.references | PAWŁOWSKI D., BORÓWKA R.K., KOWALEWSKI G., LUOTO T.P., MILECKA K., NEVALAINEN L., OKUPNY D., ZIELIŃSKI T. and TOMKOWIAK J. 2016b. Late Weichselian and Holocene record of the paleoenvironmental changes in a small river valley in Central Poland. Quaternary Science Reviews 135: 24–40. | pl_PL |
dc.references | PLIKK A., ENGELS S., LUOTO T.P., NAZAROVA L., SALONEN J.S. and HELMENS K.F. 2019. Chironomidbased temperature reconstruction for the Eemian Interglacial (MIS 5e) at Sokli, northeast Finland. Journal of Paleolimnology 61: 355–371. | pl_PL |
dc.references | RANTALA M.V., NEVALAINEN L., RAUTIO M., GALKIN A. and LUOTO T.P. 2016a. Sources and controls of organic carbon in lakes across the subarctic treeline. Biogeochemistry 129: 235–253. | pl_PL |
dc.references | RANTALA M.V., LUOTO T.P. and NEVALAINEN L. 2016b. Temperature controls organic carbon sequestration in a subarctic lake. Scientific Reports 6: 34780. | pl_PL |
dc.references | ROUSE W.R., BLANKEN P.D., DUGUAY C.R., OSWALD C.J. and SCHERTZER W.M. 2008. Climate-lake interactions. In: Cold region atmospheric and hydrologic studies. The Mackenzie GEWEX experience, pp 139–160. Springer, Berlin, Heidelberg. | pl_PL |
dc.references | SARMAJA-KORJONEN K. 2004. Chydorid ephippia as indicators of past environmental changes–a new method. Hydrobiologia 526: 129–136. | pl_PL |
dc.references | SARMAJA-KORJONEN K. 2003. Chydorid ephippia as indicators of environmental change biostratigraphical evidence from two lakes in southern Finland. The Holocene 13: 691–700 | pl_PL |
dc.references | SCREEN J.A. and SIMMONDS I. 2012. Declining snowfall in the Arctic: causes, impacts and feedbacks. Climate Dynamics 38: 2243–2256. | pl_PL |
dc.references | SERREZE M.C., BARRETT A.P., STROEVE J.C., KINDIG D.N. and HOLLAND M.M. 2009. The emergence of surface-based Arctic amplification. Cryosphere 3: 11–19. | pl_PL |
dc.references | SHALA S., HELMENS K.F., LUOTO T.P., SALONEN J.S., VÄLIRANTA M. and WECKSTRÖM J. 2017. Comparison of quantitative Holocene temperature reconstructions using multiple proxies from a northern boreal lake. The Holocene 27: 1745–1755. | pl_PL |
dc.references | SMOL J.P. 2009. Pollution of lakes and rivers: a paleoenvironmental perspective. John Wiley & Sons, Malden, Oxford, Carlton: 396 pp | pl_PL |
dc.references | SZEROCZYŃSKA K. and SARMAJA-KORJONEN K. 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie, Poland: 84 pp. | pl_PL |
dc.references | VAN DAMME K. and NEVALAINEN L. 2019. The most latent cladoceran in the Holarctic revealed sinking Unapertura Sarmaja-Korjonen, Hakojärvi & Korhola, 2000 into the genus Rhynchotalona Norman, 1903 (Branchiopoda: Cladocera: Chydoridae). Zootaxa 4613: 463–476. | pl_PL |
dc.references | VASSILJEV J. 1998. The simulated response of lakes to changes in annual and seasonal precipitation: implication for Holocene lake-level changes in northern Europe. Climate Dynamics 14: 791–801. | pl_PL |
dc.references | VEIJALAINEN N., LOTSARI E., ALHO P., VEHVILÄINEN B. and KÄYHKÖ J. 2010. National scale assessment of climate change impacts on flooding in Finland. Journal of Hydrology 391: 333–350. | pl_PL |
dc.references | WECKSTRÖM J., KORHOLA A., ERÄSTÖ P. and HOLMSTRÖM L. 2006. Temperature patterns over the past eight centuries in Northern Fennoscandia inferred from sedimentary diatoms. Quaternary Research 66: 78–86. | pl_PL |
dc.references | WILMI J. 2003. Kuhmon historia. Otavan Kirjapaino Oy, Keuruu: 605 pp. | pl_PL |
dc.references | ZAWISKA I., LUOTO T.P., NEVALAINEN L., TYLMANN W., JENSEN T.C., OBREMSKA M., SŁOWIŃSKI M., WOSZCZYK M., SCHARTAU A.K. and WALSENG B. 2017. Climate variability and lake ecosystem responses in western Scandinavia (Norway) during the last Millennium. Palaeogeography, Palaeoclimatology, Palaeoecology 466: 231–239. | pl_PL |
dc.identifier.doi | 10.24425/ppr.2020.132568 | |
dc.relation.volume | 1 | pl_PL |
dc.discipline | nauki biologiczne | pl_PL |