dc.contributor.author | Piotrowicz, Michał | |
dc.contributor.author | Kowalczyk, Aleksandra | |
dc.contributor.author | Trzybiński, Damian | |
dc.contributor.author | Woźniak, Krzysztof | |
dc.contributor.author | Kowalski, Konrad | |
dc.date.accessioned | 2021-11-10T12:29:49Z | |
dc.date.available | 2021-11-10T12:29:49Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Michał Piotrowicz, Aleksandra Kowalczyk, Damian Trzybiński, Krzysztof Woźniak, and Konrad Kowalski; Redox-Active Glycol Nucleic Acid (GNA) Components: Synthesis and Properties of the Ferrocenyl-GNA Nucleoside, Phosphoramidite, and Semicanonical Dinucleoside Phosphate; Organometallics 2020 39 (6), 813-823 DOI: 10.1021/acs.organomet.9b00851 | pl_PL |
dc.identifier.issn | 0276-7333 | |
dc.identifier.uri | http://hdl.handle.net/11089/39753 | |
dc.description.abstract | Ferrocenylated glycol nucleic acid (Fc-GNA) components are rarely studied in the field of xeno nucleic acid (XNA) chemistry. As an attempt to contribute to XNA chemistry, in the present article we report a seven-step synthesis of the first semicanonical dinucleoside containing the Fc-GNA nucleoside linked to the adenosine nucleoside with a phosphodiester bond. First, the nucleoside-bearing ethynylferrocenyl moiety in the C5 position of the uracil nucleobase was obtained. In the following steps, the nucleoside was transformed into the phosphoramidite intermediate that in turn was reacted with N6-benzoyl-2′,3′-O-isopropylideneadenosine to afford the target dinucleoside phosphate with 47% yield. The newly obtained Fc-GNA nucleoside is redox-active, and on the basis of this property (function), it belongs to a new class of functional GNA (fun-GNA) nucleosides. The electrochemistry of the Fc-GNA nucleoside, dinucleoside phosphate, and ferrocenyl furanopyrimidone nucleoside that was obtained as an undesired byproduct of Fc-GNA nucleoside synthesis was investigated by cyclic voltammetry (CV). The CV result showed the presence of a one-electron ferrocenyl-centered redox wave in each case. The half-wave potentials of the Fc-GNA nucleoside and dinucleoside phosphate were 89 and 99 mV, respectively, against the FcH/FcH+ couple. Finally, the activity of the newly obtained Fc-GNA components was studied against the nontumorigenic mouse L929 and human cervix adenocarcinoma HeLa cells. The synthesized compounds showed no cytotoxic activity against the tested cell lines. | pl_PL |
dc.description.sponsorship | K.K. thanks the National Science Center in Cracow, Poland (grant OPUS UMO-2018/29/B/ST5/00055), for financial support. Crystallographic measurements were carried out at the Biological and Chemical Research Centre, University of Warsaw, established within the project cofinanced by European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007–2013. The X-ray diffraction data were collected at the Core Facility for Crystallographic and Biophysical Research to support the development of medicinal products sponsored by the Foundation for Polish Science (FNP). | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | American Chemical Society | pl_PL |
dc.relation.ispartofseries | Organometallics;39 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Nucleic acids | pl_PL |
dc.subject | Mixtures | pl_PL |
dc.subject | Phosphates | pl_PL |
dc.subject | Electrochemical cells | pl_PL |
dc.subject | Uracil | pl_PL |
dc.title | Redox-Active Glycol Nucleic Acid (GNA) Components: Synthesis and Properties of the Ferrocenyl-GNA Nucleoside, Phosphoramidite, and Semicanonical Dinucleoside Phosphate | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 813-823 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Biology and Environmental Protection, Department of Microbial Genetics, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland | pl_PL |
dc.identifier.eissn | 1520-6041 | |
dc.references | Herdewijn, P.; Marlière, P. Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids. Chem. Biodiversity 2009, 6, 791– 808, DOI: 10.1002/cbdv.200900083 | pl_PL |
dc.references | Chaput, J. C.; Yu, H.; Zhang, S. The Emerging World of Synthetic Genetics. Chem. Biol. 2012, 19, 1360– 1371, DOI: 10.1016/j.chembiol.2012.10.011 | pl_PL |
dc.references | Pinheiro, V. B.; Hollinger, P. Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends Biotechnol. 2014, 32, 321– 328, DOI: 10.1016/j.tibtech.2014.03.010 | pl_PL |
dc.references | Ausländer, S.; Ausländer, D.; Fussenegger, M. Synthetic Biology-The Synthesis of Biology. Angew. Chem., Int. Ed. 2017, 56, 6396– 6419, DOI: 10.1002/anie.201609229 | pl_PL |
dc.references | Pinheiro, V. B.; Taylor, A. I.; Cozens, C.; Abramov, M.; Renders, M.; Zhang, S.; Chaput, J. C.; Wengel, J.; Peak-Chew, S. Y.; McLaughlin, S. H. Synthetic Genetic Polymers Capable of Heredity and Evolution. Science 2012, 336, 341– 344, DOI: 10.1126/science.121762 | pl_PL |
dc.references | Yu, H.; Zhang, S.; Dunn, M.; Chaput, J. C. An Efficient and Faithful in Vitro Replication System for Threose Nucleic Acid. J. Am. Chem. Soc. 2013, 135, 3583– 3591, DOI: 10.1021/ja3118703 | pl_PL |
dc.references | Chaput, J. C.; Ichida, J. K.; Szostak, J. W. DNA Polymerase-Mediated DNA Synthesis on a TNA Template. J. Am. Chem. Soc. 2003, 125, 856– 857, DOI: 10.1021/ja028589k | pl_PL |
dc.references | Chaput, J. C.; Szostak, J. W. TNA Synthesis by DNA Polymerases. J. Am. Chem. Soc. 2003, 125, 9274– 9275, DOI: 10.1021/ja035917n | pl_PL |
dc.references | Kempeneers, V.; Vastmans, K.; Rozenski, J.; Herdewijn, P. Recognition of threosyl nucleotides by DNA and RNA polymerases. Nucleic Acids Res. 2003, 31, 6221– 6226, DOI: 10.1093/nar/gkg833 | pl_PL |
dc.references | Horhota, A.; Zou, K.; Ichida, J. K.; Yu, B.; McLaughlin, L. W.; Szostak, J. W.; Chaput, J. C. Kinetic Analysis of an Efficient DNA-Dependent TNA Polymerase. J. Am. Chem. Soc. 2005, 127, 7427– 7434, DOI: 10.1021/ja0428255 | pl_PL |
dc.references | Peng, C. G.; Damha, M. J. Polymerase-Directed Synthesis of 2′-Deoxy-2′-fluoro-β-D-arabinonucleic Acids. J. Am. Chem. Soc. 2007, 129, 5310– 5311, DOI: 10.1021/ja069100g | pl_PL |
dc.references | Taylor, A.; Hollinger, P. Directed evolution of artificial enzymes (XNAzymes) from diverse repertoires of synthetic genetic polymers. Nat. Protoc. 2015, 10, 1625– 1642, DOI: 10.1038/nprot.2015.104 | pl_PL |
dc.references | Yu, H.; Zhang, S.; Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 2012, 4, 183– 187, DOI: 10.1038/nchem.1241 | pl_PL |
dc.references | Daly, S. M.; Sturge, C. R.; Marshall-Batty, K. R.; Felder-Scott, C. F.; Jain, R.; Geller, B. L.; Greenberg, D. E. Antisense Inhibitors Retain Activity in Pulmonary Models of Burkholderia Infection. ACS Infect. Dis. 2018, 4 (5), 806– 814, DOI: 10.1021/acsinfecdis.7b00235 | pl_PL |
dc.references | Meggers, E.; Zhang, L. Synthesis and Properties of the Simplified Nucleic Acid Glycol Nucleic Acid. Acc. Chem. Res. 2010, 43, 1092– 1102, DOI: 10.1021/ar900292q | pl_PL |
dc.references | Anosova, I.; Kowal, E. A.; Dunn, M. R.; Chaput, J. C.; Van Horn, W. D.; Egli, M. The structural diversity of artificial genetic polymers. Nucleic Acids Res. 2016, 44, 1007– 1021, DOI: 10.1093/nar/gkv1472 | pl_PL |
dc.references | Ueda, N.; Kawabata, T.; Takemoto, K. Synthesis of N-(2,3-dihydroxypropyl) derivatives of nucleic bases. J. Heterocycl. Chem. 1971, 8, 827– 829, DOI: 10.1002/jhet.5570080527 | pl_PL |
dc.references | Seita, T.; Yamauchi, K.; Kinoshita, M.; Imoto, M. The Synthesis of Nucleoside and Nucleotide Analogs. Bull. Chem. Soc. Jpn. 1972, 45, 926– 928, DOI: 10.1246/bcsj.45.926 | pl_PL |
dc.references | Seita, T.; Kinoshita, M.; Imoto, M. Synthesis of Some Substituted Nucleoside Analogs. Bull. Chem. Soc. Jpn. 1973, 46, 1572– 1573, DOI: 10.1246/bcsj.46.1572 | pl_PL |
dc.references | Seita, T.; Yamauchi, K.; Kinoshita, M.; Imoto, M. Condensation polymerization of nucleotide analogues. Makromol. Chem. 1972, 154, 255– 261, DOI: 10.1002/macp.1972.021540123 | pl_PL |
dc.references | Holý, A.; Ivanova, G. S. Aliphatic analogues of nucleotides: synthesis and affinity towards nucleases. Nucleic Acids Res. 1974, 1, 19– 34, DOI: 10.1093/nar/1.1.19 | pl_PL |
dc.references | Holý, A. Aliphatic analogues of nucleosides, nucleotides, and oligonucleotides. Collect. Czech. Chem. Commun. 1975, 40, 187– 214, DOI: 10.1135/cccc19750187 | pl_PL |
dc.references | Cook, P. D.; Acevedo, O. L.; Davis, P. W.; Ecker, D. J.; Normand, H. Phosphate linked oligomers. U.S. Patent5886177, 1999. | pl_PL |
dc.references | Acevedo, O. L.; Andrews, R. S. Synthesis of propane-2,3-diol combinatorial monomers. Tetrahedron Lett. 1996, 37, 3931– 3934, DOI: 10.1016/0040-4039(96)00745-9 | pl_PL |
dc.references | Nielsen, P.; Dreiøe, L. H.; Wengel, J. Synthesis and evaluation of oligodeoxynucleotides containing acyclic nucleosides: Introduction of three novel analogues and a summary. Bioorg. Med. Chem. 1995, 3, 19– 28, DOI: 10.1016/0968-0896(94)00143-Q | pl_PL |
dc.references | Zhang, L.; Peritz, A.; Meggers, E. A Simple Glycol Nucleic Acid. J. Am. Chem. Soc. 2005, 127, 4174– 4175, DOI: 10.1021/ja042564z | pl_PL |
dc.references | Zhang, L.; Peritz, A. E.; Carroll, P. J.; Meggers, E. Synthesis of Glycol Nucleic Acids. Synthesis 2006, 2006, 645– 653, DOI: 10.1055/s-2006-926313 | pl_PL |
dc.references | Schlegel, M. K.; Meggers, E. Improved Phosphoramidite Building Blocks for the Synthesis of the Simplified Nucleic Acid GNA. J. Org. Chem. 2009, 74, 4615– 4618, DOI: 10.1021/jo900365a | pl_PL |
dc.references | Schlegel, M. K.; Xie, X.; Zhang, L.; Meggers, E. Insight into the High Duplex Stability of the Simplified Nucleic Acid GNA. Angew. Chem., Int. Ed. 2009, 48, 960– 963, DOI: 10.1002/anie.200803472 | pl_PL |
dc.references | Schlegel, M. K.; Peritz, A. E.; Kittigowittana, K.; Zhang, L.; Meggers, E. Duplex Formation of the Simplified Nucleic Acid GNA. ChemBioChem 2007, 8, 927– 932, DOI: 10.1002/cbic.200600435 | pl_PL |
dc.references | Schlegel, M. K.; Essen, L.-O.; Meggers, E. Duplex Structure of a Minimal Nucleic Acid. J. Am. Chem. Soc. 2008, 130, 8158– 8159, DOI: 10.1021/ja802788g | pl_PL |
dc.references | Schlegel, M. K.; Essen, L.-O.; Meggers, E. Atomic resolution duplex structure of the simplified nucleic acid GNA. Chem. Commun. 2010, 46, 1094– 1096, DOI: 10.1039/B916851F | pl_PL |
dc.references | Declercq, R.; Van Aerschot, A.; Read, R. J.; Herdewijn, P.; Van Meervelt, L. Crystal Structure of Double Helical Hexitol Nucleic Acids. J. Am. Chem. Soc. 2002, 124, 928– 933, DOI: 10.1021/ja016570w | pl_PL |
dc.references | Egli, M.; Pallan, P. S.; Pattanayek, R.; Wilds, C. J.; Lubini, P.; Minasov, G.; Dobler, M.; Leumann, C. J.; Eschenmoser, A. Crystal Structure of Homo-DNA and Nature’s Choice of Pentose over Hexose in the Genetic System. J. Am. Chem. Soc. 2006, 128, 10847– 10856, DOI: 10.1021/ja062548x | pl_PL |
dc.references | Zhang, R. S.; McCullum, E. O.; Chaput, J. C. Synthesis of Two Mirror Image 4-Helix Junctions Derived from Glycerol Nucleic Acid. J. Am. Chem. Soc. 2008, 130, 5846– 5847, DOI: 10.1021/ja800079j | pl_PL |
dc.references | Hakala, H.; Ollikka, P.; Degerholm, J.; Hovinen, J. Oligonucleotide conjugates based on acyclonucleosides and their use in DNA hybridization assays. Tetrahedron 2002, 58, 8771– 8777, DOI: 10.1016/S0040-4020(02)01056-6 | pl_PL |
dc.references | Chen, J. J.; Cai, X.; Szostak, J. W. N2′-P3′ Phosphoramidate Glycerol Nucleic Acid as a Potential Alternative Genetic System. J. Am. Chem. Soc. 2009, 131, 2119– 2121, DOI: 10.1021/ja809069b | pl_PL |
dc.references | Kaiser, M. M.; Novák, P.; Rosenbergová, Š.; Poštová-Slavětínská, L.; Rosenberg, I.; Janeba, Z. Acyclic Nucleoside Phosphonates Bearing (R)- or (S)-9-[3-Hydroxy-2-(phosphonoethoxy)propyl] (HPEP) Moiety as Monomers for the Synthesis of Modified Oligonucleotides. Eur. J. Org. Chem. 2018, 2018, 5119– 5126, DOI: 10.1002/ejoc.201800490 | pl_PL |
dc.references | Larsen, E.; Danel, K.; Pedersen, E. B. Synthesis of a Carboxamide Linked T*T Dimer with an Acyclic Nucleoside Unit and Its Incorporation in Oligodeoxynucleotides. Nucleosides Nucleotides 1995, 14, 1905– 1912, DOI: 10.1080/15257779508010713 | pl_PL |
dc.references | Kowalski, K. Ferrocenyl-nucleobase complexes: Synthesis, chemistry and applications. Coord. Chem. Rev. 2016, 317, 132– 156, DOI: 10.1016/j.ccr.2016.02.008 | pl_PL |
dc.references | Toma, M.; Božičević, L.; Lapić, J.; Djaković, S.; Šakić, D.; Tandarić, T.; Vianello, R.; Vrček, V. Transacylation in Ferrocenoyl-Purines. NMR and Computational Study of the Isomerization Mechanism. J. Org. Chem. 2019, 84, 12471– 12480, DOI: 10.1021/acs.joc.9b01944 | pl_PL |
dc.references | Kowalski, K.; Skiba, J.; Oehninger, L.; Ott, I.; Solecka, J.; Rajnisz, A.; Therrien, B. Metallocene-Modified Uracils: Synthesis, Structure, and Biological Activity. Organometallics 2013, 32, 5766– 5773, DOI: 10.1021/om400294s | pl_PL |
dc.references | Skiba, J.; Karpowicz, R.; Szabó, I.; Therrien, B.; Kowalski, K. Synthesis and anticancer activity studies of ferrocenyl-thymine-3,6-dihydro-2H-thiopyranes – A new class of metallocene-nucleobase derivatives. J. Organomet. Chem. 2015, 794, 216– 222, DOI: 10.1016/j.jorganchem.2015.07.012 | pl_PL |
dc.references | Kedge, J. L.; Nguyen, H. V.; Khan, Z.; Male, L.; Ismail, M. K.; Roberts, H. V.; Hodges, N. J.; Horswell, S. L.; Mehellou, Y.; Tucker, J. H. R. Organometallic Nucleoside Analogues: Effect of Hydroxyalkyl Linker Length on Cancer Cell Line Toxicity. Eur. J. Inorg. Chem. 2017, 2017, 466– 476, DOI: 10.1002/ejic.201600853 | pl_PL |
dc.references | Nguyen, H. V.; Sallustrau, A.; Balzarini, J.; Bedford, M. R.; Eden, J. C.; Georgousi, N.; Hodges, N. J.; Kedge, J.; Mehellou, Y.; Tselepis, C.; Tucker, J. H. R. Organometallic Nucleoside Analogues with Ferrocenyl Linker Groups: Synthesis and Cancer Cell Line Studies. J. Med. Chem. 2014, 57, 5817– 5822, DOI: 10.1021/jm500246h | pl_PL |
dc.references | Anisimov, I.; Saloman, S.; Hildebrandt, A.; Lang, H.; Trzybiński, D.; Woźniak, K.; Šakić, D.; Vrček, V.; Kowalski, K. 1,1′-Bis(thymine)ferrocene Nucleoside: Synthesis and Study of Its Stereoselective Formation. ChemPlusChem 2017, 82, 859– 866, DOI: 10.1002/cplu.201700215 | pl_PL |
dc.references | Skiba, J.; Yuan, Q.; Hildebrandt, A.; Lang, H.; Trzybiński, D.; Woźniak, K.; Balogh, R. K.; Gyurcsik, B.; Vrček, V.; Kowalski, K. Ferrocenyl GNA Nucleosides: A Bridge between Organic and Organometallic Xeno-nucleic Acids. ChemPlusChem 2018, 83, 77– 86, DOI: 10.1002/cplu.201700551 | pl_PL |
dc.references | Nguyen, H. V.; Zhao, Z. Y.; Sallustrau, A.; Horswell, S. L.; Male, L.; Mulas, A.; Tucker, J. H. R. A ferrocene nucleic acid oligomer as an organometallic structural mimic of DNA. Chem. Commun. 2012, 48, 12165– 12167, DOI: 10.1039/c2cc36428j | pl_PL |
dc.references | Skiba, J.; Schmidt, C.; Lippmann, P.; Ensslen, P.; Wagenknecht, H.-A.; Czerwieniec, R.; Brandl, F.; Ott, I.; Berna acus, T.; Krawczyk, B.; Szczukocki, D.; Kowalski, K. Substitution of Metallocenes with [2.2]Paracyclophane to Enable Confocal Microscopy Imaging in Living Cells. Eur. J. Inorg. Chem. 2017, 2017, 297– 305, DOI: 10.1002/ejic.201600281 | pl_PL |
dc.references | Kowalski, K.; Szczupak, Ł.; Saloman, S.; Steverding, D.; Jabłoński, A.; Vrček, V.; Hildebrandt, A.; Lang, H.; Rybarczyk-Pirek, A. Cymantrene, Cyrhetrene and Ferrocene Nucleobase Conjugates: Synthesis, Structure, Computational Study, Electrochemistry and Antitrypanosomal Activity. ChemPlusChem 2017, 82, 303– 314, DOI: 10.1002/cplu.201600462 | pl_PL |
dc.references | Skiba, J.; Kowalczyk, A.; Fik, M. A.; Gapińska, M.; Trzybiński, D.; Woźniak, K.; Vrček, V.; Czerwieniec, R.; Kowalski, K. Luminescent pyrenyl-GNA nucleosides: synthesis, photophysics and confocal microscopy studies in cancer HeLa cells. Photochem. Photobiol. Sci. 2019, 18, 2449– 2460, DOI: 10.1039/C9PP00271E | pl_PL |
dc.references | Russ, P.; Schelling, P.; Scapozza, L.; Folkers, G.; Clercq, E. D.; Marquez, V. E. Synthesis and Biological Evaluation of 5-Substituted Derivatives of the Potent Antiherpes Agent (north)-Methanocarbathymine. J. Med. Chem. 2003, 46, 5045– 5054, DOI: 10.1021/jm030241s | pl_PL |
dc.references | Ciuk, A. K.; Gloe, T.-E.; Lindhorst, T. K. Carbohydrate-Scaffolded Thymine Multimers: Scope and Limitations of the Allylation–Hydroboration Sequence. Eur. J. Org. Chem. 2018, 2018, 6971– 6982, DOI: 10.1002/ejoc.201801387 | pl_PL |
dc.references | Coutouli-Argyropoulou, E.; Tsitabani, M.; Petrantonakis, G.; Terzis, A.; Raptopoulou, C. Labeling of organic biomolecules with ethynylferrocene. Org. Biomol. Chem. 2003, 1, 1382– 1388, DOI: 10.1039/b300191a | pl_PL |
dc.references | Inouye, M.; Ikeda, R.; Takase, M.; Tsuri, T.; Chiba, J. Single-nucleotide Polymorphism Detection with “wire-like” DNA Probes That Display Quasi “on-off” Digital Action. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11606– 11610, DOI: 10.1073/pnas.0502078102 | pl_PL |
dc.references | Fan, C.; Plaxco, K. W.; Heeger, A. J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9134– 9137, DOI: 10.1073/pnas.1633515100 | pl_PL |
dc.references | Anne, A.; Demaille, C. Dynamics of Electron Transport by Elastic Bending of Short DNA Duplexes. Experimental Study and Quantitative Modeling of the Cyclic Voltammetric Behavior of 3′-Ferrocenyl DNA End-Grafted on Gold. J. Am. Chem. Soc. 2006, 128, 542– 557, DOI: 10.1021/ja055112a | pl_PL |
dc.references | Iurlo, M.; Mengozzi, L.; Rapino, S.; Marcaccio, M.; Perone, R. C.; Masiero, S.; Cozzi, P.; Paolucci, F. New Approaches Toward Ferrocene-Guanine Conjugates: Synthesis and Electrochemical Behavior. Organometallics 2014, 33, 4986– 4993, DOI: 10.1021/om5002809 | pl_PL |
dc.references | Electrochemistry; Hamann, C. H., Hamnett, A., Vielstich, W., Eds.; Wiley-VCH: Weinheim, Germany, 2007. | pl_PL |
dc.references | CrysAlis CCD and CrysAlis RED; Oxford Diffraction Ltd: Yarnton, U.K., 2008. | pl_PL |
dc.references | Clark, R. C.; Reid, J. S. The analytical calculation of absorption in multifaceted crystals Acta Cryst. Acta Crystallogr., Sect. A: Found. Crystallogr. 1995, 51, 887– 897, DOI: 10.1107/S0108767395007367 | pl_PL |
dc.references | Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3– 8, DOI: 10.1107/S2053229614024218 | pl_PL |
dc.references | Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 148– 155, DOI: 10.1107/S090744490804362X | pl_PL |
dc.references | Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339– 341, DOI: 10.1107/S0021889808042726 | pl_PL |
dc.references | Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0– new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466– 470, DOI: 10.1107/S0021889807067908 | pl_PL |
dc.references | Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849– 854, DOI: 10.1107/S0021889812029111 | pl_PL |
dc.references | Jabłoński, A.; Kowalczyk, A.; Fik, M. A.; Trzybiński, D.; Woźniak, K.; Vinogradova, K.; Glińska, S.; Vrček, V.; Czerwieniec, R.; Kowalski, K. Anthracene-thymine luminophores: Synthesis, photophysical properties, and imaging in living HeLa cells. Dyes Pigm. 2019, 170, 107554– 107565, DOI: 10.1016/j.dyepig.2019.107554 | pl_PL |
dc.identifier.doi | 10.1021/acs.organomet.9b00851 | |
dc.relation.volume | 6 | pl_PL |
dc.discipline | nauki biologiczne | pl_PL |
dc.discipline | nauki chemiczne | pl_PL |