Show simple item record

dc.contributor.authorPiotrowicz, Michał
dc.contributor.authorKowalczyk, Aleksandra
dc.contributor.authorTrzybiński, Damian
dc.contributor.authorWoźniak, Krzysztof
dc.contributor.authorKowalski, Konrad
dc.date.accessioned2021-11-10T12:29:49Z
dc.date.available2021-11-10T12:29:49Z
dc.date.issued2020
dc.identifier.citationMichał Piotrowicz, Aleksandra Kowalczyk, Damian Trzybiński, Krzysztof Woźniak, and Konrad Kowalski; Redox-Active Glycol Nucleic Acid (GNA) Components: Synthesis and Properties of the Ferrocenyl-GNA Nucleoside, Phosphoramidite, and Semicanonical Dinucleoside Phosphate; Organometallics 2020 39 (6), 813-823 DOI: 10.1021/acs.organomet.9b00851pl_PL
dc.identifier.issn0276-7333
dc.identifier.urihttp://hdl.handle.net/11089/39753
dc.description.abstractFerrocenylated glycol nucleic acid (Fc-GNA) components are rarely studied in the field of xeno nucleic acid (XNA) chemistry. As an attempt to contribute to XNA chemistry, in the present article we report a seven-step synthesis of the first semicanonical dinucleoside containing the Fc-GNA nucleoside linked to the adenosine nucleoside with a phosphodiester bond. First, the nucleoside-bearing ethynylferrocenyl moiety in the C5 position of the uracil nucleobase was obtained. In the following steps, the nucleoside was transformed into the phosphoramidite intermediate that in turn was reacted with N6-benzoyl-2′,3′-O-isopropylideneadenosine to afford the target dinucleoside phosphate with 47% yield. The newly obtained Fc-GNA nucleoside is redox-active, and on the basis of this property (function), it belongs to a new class of functional GNA (fun-GNA) nucleosides. The electrochemistry of the Fc-GNA nucleoside, dinucleoside phosphate, and ferrocenyl furanopyrimidone nucleoside that was obtained as an undesired byproduct of Fc-GNA nucleoside synthesis was investigated by cyclic voltammetry (CV). The CV result showed the presence of a one-electron ferrocenyl-centered redox wave in each case. The half-wave potentials of the Fc-GNA nucleoside and dinucleoside phosphate were 89 and 99 mV, respectively, against the FcH/FcH+ couple. Finally, the activity of the newly obtained Fc-GNA components was studied against the nontumorigenic mouse L929 and human cervix adenocarcinoma HeLa cells. The synthesized compounds showed no cytotoxic activity against the tested cell lines.pl_PL
dc.description.sponsorshipK.K. thanks the National Science Center in Cracow, Poland (grant OPUS UMO-2018/29/B/ST5/00055), for financial support. Crystallographic measurements were carried out at the Biological and Chemical Research Centre, University of Warsaw, established within the project cofinanced by European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007–2013. The X-ray diffraction data were collected at the Core Facility for Crystallographic and Biophysical Research to support the development of medicinal products sponsored by the Foundation for Polish Science (FNP).pl_PL
dc.language.isoenpl_PL
dc.publisherAmerican Chemical Societypl_PL
dc.relation.ispartofseriesOrganometallics;39
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNucleic acidspl_PL
dc.subjectMixturespl_PL
dc.subjectPhosphatespl_PL
dc.subjectElectrochemical cellspl_PL
dc.subjectUracilpl_PL
dc.titleRedox-Active Glycol Nucleic Acid (GNA) Components: Synthesis and Properties of the Ferrocenyl-GNA Nucleoside, Phosphoramidite, and Semicanonical Dinucleoside Phosphatepl_PL
dc.typeArticlepl_PL
dc.page.number813-823pl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Biology and Environmental Protection, Department of Microbial Genetics, University of Łódź, Banacha 12/16, 90-237 Łódź, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Polandpl_PL
dc.identifier.eissn1520-6041
dc.referencesHerdewijn, P.; Marlière, P. Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids. Chem. Biodiversity 2009, 6, 791– 808, DOI: 10.1002/cbdv.200900083pl_PL
dc.referencesChaput, J. C.; Yu, H.; Zhang, S. The Emerging World of Synthetic Genetics. Chem. Biol. 2012, 19, 1360– 1371, DOI: 10.1016/j.chembiol.2012.10.011pl_PL
dc.referencesPinheiro, V. B.; Hollinger, P. Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends Biotechnol. 2014, 32, 321– 328, DOI: 10.1016/j.tibtech.2014.03.010pl_PL
dc.referencesAusländer, S.; Ausländer, D.; Fussenegger, M. Synthetic Biology-The Synthesis of Biology. Angew. Chem., Int. Ed. 2017, 56, 6396– 6419, DOI: 10.1002/anie.201609229pl_PL
dc.referencesPinheiro, V. B.; Taylor, A. I.; Cozens, C.; Abramov, M.; Renders, M.; Zhang, S.; Chaput, J. C.; Wengel, J.; Peak-Chew, S. Y.; McLaughlin, S. H. Synthetic Genetic Polymers Capable of Heredity and Evolution. Science 2012, 336, 341– 344, DOI: 10.1126/science.121762pl_PL
dc.referencesYu, H.; Zhang, S.; Dunn, M.; Chaput, J. C. An Efficient and Faithful in Vitro Replication System for Threose Nucleic Acid. J. Am. Chem. Soc. 2013, 135, 3583– 3591, DOI: 10.1021/ja3118703pl_PL
dc.referencesChaput, J. C.; Ichida, J. K.; Szostak, J. W. DNA Polymerase-Mediated DNA Synthesis on a TNA Template. J. Am. Chem. Soc. 2003, 125, 856– 857, DOI: 10.1021/ja028589kpl_PL
dc.referencesChaput, J. C.; Szostak, J. W. TNA Synthesis by DNA Polymerases. J. Am. Chem. Soc. 2003, 125, 9274– 9275, DOI: 10.1021/ja035917npl_PL
dc.referencesKempeneers, V.; Vastmans, K.; Rozenski, J.; Herdewijn, P. Recognition of threosyl nucleotides by DNA and RNA polymerases. Nucleic Acids Res. 2003, 31, 6221– 6226, DOI: 10.1093/nar/gkg833pl_PL
dc.referencesHorhota, A.; Zou, K.; Ichida, J. K.; Yu, B.; McLaughlin, L. W.; Szostak, J. W.; Chaput, J. C. Kinetic Analysis of an Efficient DNA-Dependent TNA Polymerase. J. Am. Chem. Soc. 2005, 127, 7427– 7434, DOI: 10.1021/ja0428255pl_PL
dc.referencesPeng, C. G.; Damha, M. J. Polymerase-Directed Synthesis of 2′-Deoxy-2′-fluoro-β-D-arabinonucleic Acids. J. Am. Chem. Soc. 2007, 129, 5310– 5311, DOI: 10.1021/ja069100gpl_PL
dc.referencesTaylor, A.; Hollinger, P. Directed evolution of artificial enzymes (XNAzymes) from diverse repertoires of synthetic genetic polymers. Nat. Protoc. 2015, 10, 1625– 1642, DOI: 10.1038/nprot.2015.104pl_PL
dc.referencesYu, H.; Zhang, S.; Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 2012, 4, 183– 187, DOI: 10.1038/nchem.1241pl_PL
dc.referencesDaly, S. M.; Sturge, C. R.; Marshall-Batty, K. R.; Felder-Scott, C. F.; Jain, R.; Geller, B. L.; Greenberg, D. E. Antisense Inhibitors Retain Activity in Pulmonary Models of Burkholderia Infection. ACS Infect. Dis. 2018, 4 (5), 806– 814, DOI: 10.1021/acsinfecdis.7b00235pl_PL
dc.referencesMeggers, E.; Zhang, L. Synthesis and Properties of the Simplified Nucleic Acid Glycol Nucleic Acid. Acc. Chem. Res. 2010, 43, 1092– 1102, DOI: 10.1021/ar900292qpl_PL
dc.referencesAnosova, I.; Kowal, E. A.; Dunn, M. R.; Chaput, J. C.; Van Horn, W. D.; Egli, M. The structural diversity of artificial genetic polymers. Nucleic Acids Res. 2016, 44, 1007– 1021, DOI: 10.1093/nar/gkv1472pl_PL
dc.referencesUeda, N.; Kawabata, T.; Takemoto, K. Synthesis of N-(2,3-dihydroxypropyl) derivatives of nucleic bases. J. Heterocycl. Chem. 1971, 8, 827– 829, DOI: 10.1002/jhet.5570080527pl_PL
dc.referencesSeita, T.; Yamauchi, K.; Kinoshita, M.; Imoto, M. The Synthesis of Nucleoside and Nucleotide Analogs. Bull. Chem. Soc. Jpn. 1972, 45, 926– 928, DOI: 10.1246/bcsj.45.926pl_PL
dc.referencesSeita, T.; Kinoshita, M.; Imoto, M. Synthesis of Some Substituted Nucleoside Analogs. Bull. Chem. Soc. Jpn. 1973, 46, 1572– 1573, DOI: 10.1246/bcsj.46.1572pl_PL
dc.referencesSeita, T.; Yamauchi, K.; Kinoshita, M.; Imoto, M. Condensation polymerization of nucleotide analogues. Makromol. Chem. 1972, 154, 255– 261, DOI: 10.1002/macp.1972.021540123pl_PL
dc.referencesHolý, A.; Ivanova, G. S. Aliphatic analogues of nucleotides: synthesis and affinity towards nucleases. Nucleic Acids Res. 1974, 1, 19– 34, DOI: 10.1093/nar/1.1.19pl_PL
dc.referencesHolý, A. Aliphatic analogues of nucleosides, nucleotides, and oligonucleotides. Collect. Czech. Chem. Commun. 1975, 40, 187– 214, DOI: 10.1135/cccc19750187pl_PL
dc.referencesCook, P. D.; Acevedo, O. L.; Davis, P. W.; Ecker, D. J.; Normand, H. Phosphate linked oligomers. U.S. Patent5886177, 1999.pl_PL
dc.referencesAcevedo, O. L.; Andrews, R. S. Synthesis of propane-2,3-diol combinatorial monomers. Tetrahedron Lett. 1996, 37, 3931– 3934, DOI: 10.1016/0040-4039(96)00745-9pl_PL
dc.referencesNielsen, P.; Dreiøe, L. H.; Wengel, J. Synthesis and evaluation of oligodeoxynucleotides containing acyclic nucleosides: Introduction of three novel analogues and a summary. Bioorg. Med. Chem. 1995, 3, 19– 28, DOI: 10.1016/0968-0896(94)00143-Qpl_PL
dc.referencesZhang, L.; Peritz, A.; Meggers, E. A Simple Glycol Nucleic Acid. J. Am. Chem. Soc. 2005, 127, 4174– 4175, DOI: 10.1021/ja042564zpl_PL
dc.referencesZhang, L.; Peritz, A. E.; Carroll, P. J.; Meggers, E. Synthesis of Glycol Nucleic Acids. Synthesis 2006, 2006, 645– 653, DOI: 10.1055/s-2006-926313pl_PL
dc.referencesSchlegel, M. K.; Meggers, E. Improved Phosphoramidite Building Blocks for the Synthesis of the Simplified Nucleic Acid GNA. J. Org. Chem. 2009, 74, 4615– 4618, DOI: 10.1021/jo900365apl_PL
dc.referencesSchlegel, M. K.; Xie, X.; Zhang, L.; Meggers, E. Insight into the High Duplex Stability of the Simplified Nucleic Acid GNA. Angew. Chem., Int. Ed. 2009, 48, 960– 963, DOI: 10.1002/anie.200803472pl_PL
dc.referencesSchlegel, M. K.; Peritz, A. E.; Kittigowittana, K.; Zhang, L.; Meggers, E. Duplex Formation of the Simplified Nucleic Acid GNA. ChemBioChem 2007, 8, 927– 932, DOI: 10.1002/cbic.200600435pl_PL
dc.referencesSchlegel, M. K.; Essen, L.-O.; Meggers, E. Duplex Structure of a Minimal Nucleic Acid. J. Am. Chem. Soc. 2008, 130, 8158– 8159, DOI: 10.1021/ja802788gpl_PL
dc.referencesSchlegel, M. K.; Essen, L.-O.; Meggers, E. Atomic resolution duplex structure of the simplified nucleic acid GNA. Chem. Commun. 2010, 46, 1094– 1096, DOI: 10.1039/B916851Fpl_PL
dc.referencesDeclercq, R.; Van Aerschot, A.; Read, R. J.; Herdewijn, P.; Van Meervelt, L. Crystal Structure of Double Helical Hexitol Nucleic Acids. J. Am. Chem. Soc. 2002, 124, 928– 933, DOI: 10.1021/ja016570wpl_PL
dc.referencesEgli, M.; Pallan, P. S.; Pattanayek, R.; Wilds, C. J.; Lubini, P.; Minasov, G.; Dobler, M.; Leumann, C. J.; Eschenmoser, A. Crystal Structure of Homo-DNA and Nature’s Choice of Pentose over Hexose in the Genetic System. J. Am. Chem. Soc. 2006, 128, 10847– 10856, DOI: 10.1021/ja062548xpl_PL
dc.referencesZhang, R. S.; McCullum, E. O.; Chaput, J. C. Synthesis of Two Mirror Image 4-Helix Junctions Derived from Glycerol Nucleic Acid. J. Am. Chem. Soc. 2008, 130, 5846– 5847, DOI: 10.1021/ja800079jpl_PL
dc.referencesHakala, H.; Ollikka, P.; Degerholm, J.; Hovinen, J. Oligonucleotide conjugates based on acyclonucleosides and their use in DNA hybridization assays. Tetrahedron 2002, 58, 8771– 8777, DOI: 10.1016/S0040-4020(02)01056-6pl_PL
dc.referencesChen, J. J.; Cai, X.; Szostak, J. W. N2′-P3′ Phosphoramidate Glycerol Nucleic Acid as a Potential Alternative Genetic System. J. Am. Chem. Soc. 2009, 131, 2119– 2121, DOI: 10.1021/ja809069bpl_PL
dc.referencesKaiser, M. M.; Novák, P.; Rosenbergová, Š.; Poštová-Slavětínská, L.; Rosenberg, I.; Janeba, Z. Acyclic Nucleoside Phosphonates Bearing (R)- or (S)-9-[3-Hydroxy-2-(phosphonoethoxy)propyl] (HPEP) Moiety as Monomers for the Synthesis of Modified Oligonucleotides. Eur. J. Org. Chem. 2018, 2018, 5119– 5126, DOI: 10.1002/ejoc.201800490pl_PL
dc.referencesLarsen, E.; Danel, K.; Pedersen, E. B. Synthesis of a Carboxamide Linked T*T Dimer with an Acyclic Nucleoside Unit and Its Incorporation in Oligodeoxynucleotides. Nucleosides Nucleotides 1995, 14, 1905– 1912, DOI: 10.1080/15257779508010713pl_PL
dc.referencesKowalski, K. Ferrocenyl-nucleobase complexes: Synthesis, chemistry and applications. Coord. Chem. Rev. 2016, 317, 132– 156, DOI: 10.1016/j.ccr.2016.02.008pl_PL
dc.referencesToma, M.; Božičević, L.; Lapić, J.; Djaković, S.; Šakić, D.; Tandarić, T.; Vianello, R.; Vrček, V. Transacylation in Ferrocenoyl-Purines. NMR and Computational Study of the Isomerization Mechanism. J. Org. Chem. 2019, 84, 12471– 12480, DOI: 10.1021/acs.joc.9b01944pl_PL
dc.referencesKowalski, K.; Skiba, J.; Oehninger, L.; Ott, I.; Solecka, J.; Rajnisz, A.; Therrien, B. Metallocene-Modified Uracils: Synthesis, Structure, and Biological Activity. Organometallics 2013, 32, 5766– 5773, DOI: 10.1021/om400294spl_PL
dc.referencesSkiba, J.; Karpowicz, R.; Szabó, I.; Therrien, B.; Kowalski, K. Synthesis and anticancer activity studies of ferrocenyl-thymine-3,6-dihydro-2H-thiopyranes – A new class of metallocene-nucleobase derivatives. J. Organomet. Chem. 2015, 794, 216– 222, DOI: 10.1016/j.jorganchem.2015.07.012pl_PL
dc.referencesKedge, J. L.; Nguyen, H. V.; Khan, Z.; Male, L.; Ismail, M. K.; Roberts, H. V.; Hodges, N. J.; Horswell, S. L.; Mehellou, Y.; Tucker, J. H. R. Organometallic Nucleoside Analogues: Effect of Hydroxyalkyl Linker Length on Cancer Cell Line Toxicity. Eur. J. Inorg. Chem. 2017, 2017, 466– 476, DOI: 10.1002/ejic.201600853pl_PL
dc.referencesNguyen, H. V.; Sallustrau, A.; Balzarini, J.; Bedford, M. R.; Eden, J. C.; Georgousi, N.; Hodges, N. J.; Kedge, J.; Mehellou, Y.; Tselepis, C.; Tucker, J. H. R. Organometallic Nucleoside Analogues with Ferrocenyl Linker Groups: Synthesis and Cancer Cell Line Studies. J. Med. Chem. 2014, 57, 5817– 5822, DOI: 10.1021/jm500246hpl_PL
dc.referencesAnisimov, I.; Saloman, S.; Hildebrandt, A.; Lang, H.; Trzybiński, D.; Woźniak, K.; Šakić, D.; Vrček, V.; Kowalski, K. 1,1′-Bis(thymine)ferrocene Nucleoside: Synthesis and Study of Its Stereoselective Formation. ChemPlusChem 2017, 82, 859– 866, DOI: 10.1002/cplu.201700215pl_PL
dc.referencesSkiba, J.; Yuan, Q.; Hildebrandt, A.; Lang, H.; Trzybiński, D.; Woźniak, K.; Balogh, R. K.; Gyurcsik, B.; Vrček, V.; Kowalski, K. Ferrocenyl GNA Nucleosides: A Bridge between Organic and Organometallic Xeno-nucleic Acids. ChemPlusChem 2018, 83, 77– 86, DOI: 10.1002/cplu.201700551pl_PL
dc.referencesNguyen, H. V.; Zhao, Z. Y.; Sallustrau, A.; Horswell, S. L.; Male, L.; Mulas, A.; Tucker, J. H. R. A ferrocene nucleic acid oligomer as an organometallic structural mimic of DNA. Chem. Commun. 2012, 48, 12165– 12167, DOI: 10.1039/c2cc36428jpl_PL
dc.referencesSkiba, J.; Schmidt, C.; Lippmann, P.; Ensslen, P.; Wagenknecht, H.-A.; Czerwieniec, R.; Brandl, F.; Ott, I.; Berna acus, T.; Krawczyk, B.; Szczukocki, D.; Kowalski, K. Substitution of Metallocenes with [2.2]Paracyclophane to Enable Confocal Microscopy Imaging in Living Cells. Eur. J. Inorg. Chem. 2017, 2017, 297– 305, DOI: 10.1002/ejic.201600281pl_PL
dc.referencesKowalski, K.; Szczupak, Ł.; Saloman, S.; Steverding, D.; Jabłoński, A.; Vrček, V.; Hildebrandt, A.; Lang, H.; Rybarczyk-Pirek, A. Cymantrene, Cyrhetrene and Ferrocene Nucleobase Conjugates: Synthesis, Structure, Computational Study, Electrochemistry and Antitrypanosomal Activity. ChemPlusChem 2017, 82, 303– 314, DOI: 10.1002/cplu.201600462pl_PL
dc.referencesSkiba, J.; Kowalczyk, A.; Fik, M. A.; Gapińska, M.; Trzybiński, D.; Woźniak, K.; Vrček, V.; Czerwieniec, R.; Kowalski, K. Luminescent pyrenyl-GNA nucleosides: synthesis, photophysics and confocal microscopy studies in cancer HeLa cells. Photochem. Photobiol. Sci. 2019, 18, 2449– 2460, DOI: 10.1039/C9PP00271Epl_PL
dc.referencesRuss, P.; Schelling, P.; Scapozza, L.; Folkers, G.; Clercq, E. D.; Marquez, V. E. Synthesis and Biological Evaluation of 5-Substituted Derivatives of the Potent Antiherpes Agent (north)-Methanocarbathymine. J. Med. Chem. 2003, 46, 5045– 5054, DOI: 10.1021/jm030241spl_PL
dc.referencesCiuk, A. K.; Gloe, T.-E.; Lindhorst, T. K. Carbohydrate-Scaffolded Thymine Multimers: Scope and Limitations of the Allylation–Hydroboration Sequence. Eur. J. Org. Chem. 2018, 2018, 6971– 6982, DOI: 10.1002/ejoc.201801387pl_PL
dc.referencesCoutouli-Argyropoulou, E.; Tsitabani, M.; Petrantonakis, G.; Terzis, A.; Raptopoulou, C. Labeling of organic biomolecules with ethynylferrocene. Org. Biomol. Chem. 2003, 1, 1382– 1388, DOI: 10.1039/b300191apl_PL
dc.referencesInouye, M.; Ikeda, R.; Takase, M.; Tsuri, T.; Chiba, J. Single-nucleotide Polymorphism Detection with “wire-like” DNA Probes That Display Quasi “on-off” Digital Action. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11606– 11610, DOI: 10.1073/pnas.0502078102pl_PL
dc.referencesFan, C.; Plaxco, K. W.; Heeger, A. J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9134– 9137, DOI: 10.1073/pnas.1633515100pl_PL
dc.referencesAnne, A.; Demaille, C. Dynamics of Electron Transport by Elastic Bending of Short DNA Duplexes. Experimental Study and Quantitative Modeling of the Cyclic Voltammetric Behavior of 3′-Ferrocenyl DNA End-Grafted on Gold. J. Am. Chem. Soc. 2006, 128, 542– 557, DOI: 10.1021/ja055112apl_PL
dc.referencesIurlo, M.; Mengozzi, L.; Rapino, S.; Marcaccio, M.; Perone, R. C.; Masiero, S.; Cozzi, P.; Paolucci, F. New Approaches Toward Ferrocene-Guanine Conjugates: Synthesis and Electrochemical Behavior. Organometallics 2014, 33, 4986– 4993, DOI: 10.1021/om5002809pl_PL
dc.referencesElectrochemistry; Hamann, C. H., Hamnett, A., Vielstich, W., Eds.; Wiley-VCH: Weinheim, Germany, 2007.pl_PL
dc.referencesCrysAlis CCD and CrysAlis RED; Oxford Diffraction Ltd: Yarnton, U.K., 2008.pl_PL
dc.referencesClark, R. C.; Reid, J. S. The analytical calculation of absorption in multifaceted crystals Acta Cryst. Acta Crystallogr., Sect. A: Found. Crystallogr. 1995, 51, 887– 897, DOI: 10.1107/S0108767395007367pl_PL
dc.referencesSheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3– 8, DOI: 10.1107/S2053229614024218pl_PL
dc.referencesSpek, A. L. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 148– 155, DOI: 10.1107/S090744490804362Xpl_PL
dc.referencesDolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339– 341, DOI: 10.1107/S0021889808042726pl_PL
dc.referencesMacrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0– new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466– 470, DOI: 10.1107/S0021889807067908pl_PL
dc.referencesFarrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849– 854, DOI: 10.1107/S0021889812029111pl_PL
dc.referencesJabłoński, A.; Kowalczyk, A.; Fik, M. A.; Trzybiński, D.; Woźniak, K.; Vinogradova, K.; Glińska, S.; Vrček, V.; Czerwieniec, R.; Kowalski, K. Anthracene-thymine luminophores: Synthesis, photophysical properties, and imaging in living HeLa cells. Dyes Pigm. 2019, 170, 107554– 107565, DOI: 10.1016/j.dyepig.2019.107554pl_PL
dc.identifier.doi10.1021/acs.organomet.9b00851
dc.relation.volume6pl_PL
dc.disciplinenauki biologicznepl_PL
dc.disciplinenauki chemicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe