dc.contributor.author | Kaźmierczak, Anna | |
dc.date.accessioned | 2021-11-15T12:13:28Z | |
dc.date.available | 2021-11-15T12:13:28Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Kaźmierczak, A. (2014). Module of a geodesic foliation on the flat torus. Journal of Applied Mathematics and Computational Mechanics, 13(4), 61-72. doi:10.17512/jamcm.2014.4.08 | pl_PL |
dc.identifier.issn | 2299-9965 | |
dc.identifier.uri | http://hdl.handle.net/11089/39762 | |
dc.description.abstract | We study properties of geodesic foliations on the flat, n-dimensional torus.
Using the isomorphism of the Hodge star, we obtain some facts concerning compact totally
geodesic surfaces (which are the leaves of geodesic foliations). We compute the p-module of
a geodesic foliation. On the basis of these results, we derive a kind of reciprocity formula for
the product of modules of two orthogonal foliations. We relate this product with the number
of intersections of their leaves. We also obtain a formula for a product of modules of a finite
number of geodesic foliations. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Politechniki Częstochowskiej | pl_PL |
dc.relation.ispartofseries | Journal of Applied Mathematics and Computational Mechanics;13 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | flat torus | pl_PL |
dc.subject | module of a family of submanifolds | pl_PL |
dc.subject | foliation | pl_PL |
dc.subject | geodesics | pl_PL |
dc.title | Module of geodesic foliation on the flat torus | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 61-72 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science University of Lodz, Poland | pl_PL |
dc.identifier.eissn | 2353-0588 | |
dc.references | Ciska M., Pierzchalski A., On the modulus of level sets of conjugate submersions, Differential Geometry and its Applications, to appear. | pl_PL |
dc.references | Federer H., Geometric Measure Theory, Springer-Verlag, Berlin-Heidelberg -New York 1969. | pl_PL |
dc.references | Skolem T.H, Diophantische Gleichungen, Verlag von Julius Springer, Berlin 1938. | pl_PL |
dc.references | Warner F.W., Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, Berlin 1983. | pl_PL |
dc.references | Candel A., Conlon L., Foliations I. American Mathematical Society, Providence Rhode Island 2000. | pl_PL |
dc.references | Pierzchalski A., The k-module of level sets of differential mappings, Scientific Communications of the Czechoslovakian-GDR-Polish School on Differential Geometry at Boszkowo (1978), Math. Inst. Polish Acad. Sci., Warsaw, 180-185 1979. | pl_PL |
dc.contributor.authorEmail | akaz@math.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.17512/jamcm.2014.4.08 | |
dc.relation.volume | 4 | pl_PL |
dc.discipline | matematyka | pl_PL |