Show simple item record

dc.contributor.authorKoliechkina, Liudmyla
dc.contributor.authorDvirna, Olena A.
dc.contributor.authorNahirna, Alla M.
dc.description.abstractThe article is devoted to the problem of constructing and solving mathematical models of applied problems as multiobjective problems on combinatorial configurations. This question is actual branch because any task of optimal design of complex economic and technical systems, technological devices, planning and management etc. requires that the desired solution be found consider many criteria. It is used transfer to Euclidian combinatorial configurations and using of discrete optimizations methods. Method for solving such problems is considered and it includes the analyzing of structural graph of Euclidean combinatorial configurations sets. These methods can be modified by combining with other multiobjective optimization approaches depending on the initial conditions of the problem. Models for defining real estate contribution plans and production planning as multiobjective discrete problems are proposed. These models can be supplemented as needed by the required functions and, depending on the initial conditions, are presented as tasks on different sets of combinatorial configurations.pl_PL
dc.publisherInternational Research and Training Center for Information Technologies and Systems of NAS and MES Ukrainepl_PL
dc.relation.ispartofseriesControl Systems and Computers;2
dc.rightsUznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe*
dc.subjectoptimization problemspl_PL
dc.subjectcombinatorial configurationspl_PL
dc.subjectEuclidean combinatorial setpl_PL
dc.subjectoptimization problems modelpl_PL
dc.subjectoptimal solutions setpl_PL
dc.titleConstruction of a Mathematical Model of Multiobjective Optimization on Permutationspl_PL
dc.contributor.authorAffiliationUniversity of Lodz, 22 Banaha st., Lodz, 90-238, Polandpl_PL
dc.contributor.authorAffiliationPoltava University of Economics and Trade, 3 Koval st., Poltava, 36000, Ukrainepl_PL
dc.contributor.authorAffiliationNational University of “Kyiv-Mohyla Academy”, 2 Skovoroda st., Kyiv, 04070, Ukrainepl_PL
dc.referencesEhrgott, M., 2005. Multicriteria Optimization. Springer, Berlin: New York, 323 p.pl_PL
dc.referencesEhrgott, M., Gandibleux, X., 2003. “Multiobjective Combinatorial Optimization – Theory, Methodology, and Applications”. In: Ehrgott, M. and Gandibleux, X. (eds.) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, Springer US, pp. 369-444.pl_PL
dc.referencesTymofiyeva, N.K., Grytsenko, V.I., 2017. “Combinatory in the Artificial Intellect Problems”. Upravlausie sistemi i masiny, 2, pp. 6-19, 37. (In Ukrainian).pl_PL
dc.referencesKoliechkina, L., Pichugina, O., 2018. “Multiobjective Optimization on Permutations with Applications”. DEStech Transactions on Computer Science and Engineering, pp. 61-75,
dc.referencesKoliechkina, L.N., Dvirna, O.A., Nagornaya, A.N., 2014. “Modified Coordinate Method to Solve Multicriteria Optimization Problems on Combinatorial Configurations”. Cybernetics and Systems Analysis, 59 (4), pp. 620-626.
dc.referencesKorte, B., Vygen, J., 2018. Combinatorial Optimization: theory and algorithms. Heidelberg; New York: Springer, 698 p.
dc.referencesPardalos, P.M., Du, D-Z., Graham, R.L., 2013. Handbook of combinatorial optimization. New York: Springer, 3409 p.
dc.referencesPapadimitriou, C.H., Steiglitz, K., 2013. Combinatorial optimization: algorithms and complexity. Mineola: Dover Publications, 528 p.pl_PL
dc.referencesSergienko, I.V., Shilo, V.P., 2016. “Modern approaches to solving complex discrete optimization problems”. Journal of Automation and Information Sciences, 48(1), pp.15-24.
dc.referencesHulianytskyi, L., Riasna, I., 2017. “Formalization and classification of combinatorial optimization problems”. Optimization Methods and Applications, S. Butenko et al.(eds.). Springer, New York, pp. 239-250.
dc.referencesFarzad, B., Pichugina, O., Koliechkina, L., 2018. “Multi-Layer Community Detection”. International Conference on Control, Artificial Intelligence, Robotics Optimization (ICCAIRO), pp. 133-140.
dc.referencesKoliechkina, L., Pichugina, O., 2019. “A Horizontal Method of Localizing Values of a Linear Function in Permutation-Based Optimization”. In: Le Thi, H.A., Le, H.M., and Pham Dinh, T. (eds.) Optimization of Complex Systems: Theory, Models, Algorithms and Applications, Springer, Cham, pp. 355-364.
dc.referencesKoliechkina, L., Pichugina, O., Yakovlev, S., 2020. “A Graph-Theoretic Approach to Multiobjective Permutation-Based Optimization”. In: Jacimovic, M., Khachay, M., Malkova, V., and Posypkin, M. (eds.) Optimization and Applications, Springer International Publishing, Cham, pp. 383-400.
dc.referencesKoliechkina, L., Nahirna, A., Dvirna, O., 2019. “Quadratic Optimization Problemon Permutation Setwith Simulationof Applied Tasks”. Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), Zaporizhzhia, Ukraine, April 15-19, 2019, Vol. 2353, pp. 651-663.
dc.referencesKozin, I.V., Kryvtsun, O.V., Pinchuk, V.P., 2015. “Evolutionary-Fragmentary Model of the Routing Problem”. Cybern. Syst. Anal., 51, pp. 432-437.
dc.referencesKozin, I.V., Maksyshko, N.K., Perepelitsa, V.A., 2017. “Fragmentary Structures in Discrete Optimization Problems”. Cybern. Syst. Anal., 53, pp. 931-936.
dc.referencesYakovlev, S., Pichugina, O., 2019. “On Constrained Optimization of Polynomials on Permutation Set”. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019). CEUR, Vol. 2353, pp. 570–580.
dc.referencesYakovlev, S., Pichugina, O., Yarovaya, O., 2019. “Polyhedral-spherical configurations in discrete optimization problems”. Journal of Automation and Information Sciences, 51, pp. 26-40.
dc.referencesEmets, O.A., Nedobachii, S.I., Kolechkina, L.N., 2009. “An irreducible set of combinatorial polyhedron constraints in the linear-fractional optimization problem on permutations”. Discrete Mathematics and Applications. 11, pp. 95-103.
dc.referencesChase, P., 1973. “Transposition Graphs”. SIAM J. Comput. 2, pp. 128-133.
dc.referencesDonets, G., Koliechkina, L., Nahirna, A., 2020. “A Method to Solve Conditional Optimization Problems with Quadratic Objective Functions on the Set of Permutations”. Cybernetics and Systems Analysis, 56 (2), pp. 278-288.

Files in this item


This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe