Pokaż uproszczony rekord

dc.contributor.authorJęcz, Paulina
dc.contributor.authorLach, Jakub
dc.contributor.authorStrapagiel, Dominik
dc.contributor.authorMatera-Witkiewicz, Agnieszka
dc.contributor.authorStączek, Paweł
dc.date.accessioned2021-12-06T18:04:23Z
dc.date.available2021-12-06T18:04:23Z
dc.date.issued2021
dc.identifier.citationLach, J.; Jęcz, P.; Strapagiel, D.; Matera-Witkiewicz, A.; Stączek, P. The Methods of Digging for “Gold” within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes 2021, 12, 1756. https:// doi.org/10.3390/genes12111756pl_PL
dc.identifier.issn2073-4425
dc.identifier.urihttp://hdl.handle.net/11089/39971
dc.description.abstractHalophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile’s genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.pl_PL
dc.description.sponsorshipPublication’s printing cost was co-financed by the European Union from the European Social Fund under the "InterDOC-STARt" project (POWR.03.02.00-00-I033/16-00).pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesGenes;12, 1756
dc.rightsUznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjecthalophilespl_PL
dc.subjectbiomoleculespl_PL
dc.subjectmetagenomicspl_PL
dc.subjectbioinformaticspl_PL
dc.subjectgenome miningpl_PL
dc.subjectbiodiversitypl_PL
dc.subjecthypersaline environmentspl_PL
dc.titleThe Methods of Digging for “Gold” within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Toolspl_PL
dc.typeArticlepl_PL
dc.page.number18pl_PL
dc.contributor.authorAffiliationDepartment of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Polandpl_PL
dc.contributor.authorAffiliationBiobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Polandpl_PL
dc.contributor.authorAffiliationBiobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Polandpl_PL
dc.contributor.authorAffiliationScreening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Polandpl_PL
dc.referencesMa, Y.; Galinski, E.A.; Grant, W.D.; Oren, A.; Ventosa, A. Halophiles 2010: Life in Saline Environments. Appl. Environ. Microbiol. 2010, 76, 6971–6981.pl_PL
dc.referencesOren, A. Extremophiles Handbook. Extrem. Handb. 2011, 31, 1–26.pl_PL
dc.referencesAndrei, A.-S.; Banciu, H.L.; Oren, A. Living with salt: Metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol. Lett. 2012, 330, 1–9.pl_PL
dc.referencesDasSarma, S.; DasSarma, P. Halophiles. eLS 2017, 1–13.pl_PL
dc.referencesVentosa, A.; Arahal, D.R. Physico-chemical characteristics of hypersaline environments and their biodiversity. In Extremophiles; CRC Press: Boca Raton, FL, USA, 2009.pl_PL
dc.referencesVauclare, P.; Natali, F.; Kleman, J.-P.; Zaccai, G.; Franzetti, B. Surviving salt fluctuations: Stress and recovery in Halobacterium salinarum, an extreme halophilic Archaeon. Sci. Rep. 2020, 10, 3298.pl_PL
dc.referencesGunde-Cimerman, N.; Plemenitaš, A.; Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 2018, 42, 353–375.pl_PL
dc.referencesNg, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.; Lasky, S.R.; Baliga, N.; Thorsson, V.; Sbrogna, J.; et al. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 2000, 97, 12176–12181.pl_PL
dc.referencesFukuchi, S.; Yoshimune, K.; Wakayama, M.; Moriguchi, M.; Nishikawa, K. Unique Amino Acid Composition of Proteins in Halophilic Bacteria. J. Mol. Biol. 2003, 327, 347–357.pl_PL
dc.referencesBardavid, R.E.; Oren, A. Acid-shifted isoelectric point profiles of the proteins in a hypersaline microbial mat: An adaptation to life at high salt concentrations? Extremophiles 2012, 16, 787–792.pl_PL
dc.referencesDasSarma, S.; DasSarma, P. Halophiles and their enzymes: Negativity put to good use. Curr. Opin. Microbiol. 2015, 25, 120–126.pl_PL
dc.referencesPurdy, K.J.; Cresswell-Maynard, T.D.; Nedwell, D.B.; McGenity, T.J.; Grant, W.D.; Timmis, K.N.; Embley, T.M. Isolation of haloarchaea that grow at low salinities. Environ. Microbiol. 2004, 6, 591–595pl_PL
dc.referencesGreen, W.J.; Lyons, W.B. The Saline Lakes of the McMurdo Dry Valleys, Antarctica. Aquat. Geochem. 2008, 15, 321–348.pl_PL
dc.referencesCastro, P.; Huber, M.E. Marine Biology, 11th ed.; Mcgraw-Hill Education: New York City, NY, USA, 2018; ISBN 978-1-260-08510-5.pl_PL
dc.referencesPaul, V.G.; Mormile, M.R. A case for the protection of saline and hypersaline environments: A microbiological perspective. FEMS Microbiol. Ecol. 2017, 93, fix091.pl_PL
dc.referencesAlbuquerque, L.; Kowalewicz-Kulbat, M.; Drzewiecka, D.; St ˛aczek, P.; D’Auria, G.; Rosselló-Móra, R.; da Costa, M.S. Halorhabdus rudnickae sp. nov., a halophilic archaeon isolated from a salt mine borehole in Poland. Syst. Appl. Microbiol. 2016, 39, 100–105.pl_PL
dc.referencesGajardo, G.; Redón, S. Andean hypersaline lakes in the Atacama Desert, northern Chile: Between lithium exploitation and unique biodiversity conservation. Conserv. Sci. Pract. 2019, 1, e94.pl_PL
dc.referencesPal, S.; Biswas, R.; Misra, A.; Sar, A.; Banerjee, S.; Mukherjee, P.; Dam, B. Poorly known microbial taxa dominate the microbiome of hypersaline Sambhar Lake salterns in India. Extremophiles 2020, 24, 875–885.pl_PL
dc.referencesAnufriieva, E.V. How can saline and hypersaline lakes contribute to aquaculture development? A review. J. Oceanol. Limnol. 2018, 36, 2002–2009.pl_PL
dc.referencesLitvinenko, L.I.; Litvinenko, A.I.; Boiko, E.G.; Kutsanov, K. Artemia cyst production in Russia. Chin. J. Oceanol. Limnol. 2015, 33, 1436–1450.pl_PL
dc.referencesAbdollahnia, M.; Makhdoumi, A.; Mashreghi, M.; Eshghi, H. Exploring the potentials of halophilic prokaryotes from a solar saltern for synthesizing nanoparticles: The case of silver and selenium. PLoS ONE 2020, 15, e0229886.pl_PL
dc.referencesCorral, P.; Amoozegar, M.A.; Ventosa, A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar. Drugs 2019, 18, 33.pl_PL
dc.referencesYin, J.; Chen, J.C.; Wu, Q.; Chen, G.Q. Halophiles, Coming Stars for Industrial Biotechnology; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 33, ISBN 8610627942.pl_PL
dc.referencesLiu, C.; Baffoe, D.K.; Zhan, Y.; Zhang, M.; Li, Y.; Zhang, G. Halophile, an essential platform for bioproduction. J. Microbiol. Methods 2019, 166, 105704.pl_PL
dc.referencesMitra, R.; Xu, T.; Xiang, H.; Han, J. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb. Cell Factories 2020, 19, 86.pl_PL
dc.referencesOren, A. Biodiversity in highly saline environments. In Physiology and Biochemistry of Extremophiles; Wiley: Hoboken, NJ, USA, 2007; pp. 223–231.pl_PL
dc.referencesVentosa, A. Unusual micro-organisms from unusual habitats: Hypersaline environments. Prokaryotic Divers. Mech. Significance Publ. Soc. Gen. Microbiol. 2010, 66, 223–254.pl_PL
dc.referencesEdbeib, M.F.; Wahab, R.A.; Huyop, F. Halophiles: Biology, adaptation, and their role in decontamination of hypersaline environments. World J. Microbiol. Biotechnol. 2016, 32, 135.pl_PL
dc.referencesbrahim, I.M.; Konnova, S.; Sigida, E.N.; Lyubun, E.V.; Muratova, A.; Fedonenko, Y.P.; Elbanna, K. Bioremediation potential of a halophilic Halobacillus sp. strain, EG1HP4QL: Exopolysaccharide production, crude oil degradation, and heavy metal tolerance. Extremophiles 2019, 24, 157–166.pl_PL
dc.referencesJohn, J.; Siva, V.; Kumari, R.; Arya, A.; Kumar, A. Unveiling Cultivable and Uncultivable Halophilic Bacteria Inhabiting Marakkanam Saltpan, India and Their Potential for Biotechnological Applications. Geomicrobiol. J. 2020, 37, 691–701.pl_PL
dc.referencesKiadehi, M.S.H.; Amoozegar, M.A.; Asad, S.; Siroosi, M. Exploring the potential of halophilic archaea for the decolorization of azo dyes. Water Sci. Technol. 2018, 77, 1602–1611.pl_PL
dc.referencesBryanskaya, A.V.; Berezhnoy, A.A.; Rozanov, A.S.; Serdyukov, D.S.; Malup, T.K.; Peltek, S.E. Survival of halophiles of Altai lakes under extreme environmental conditions: Implications for the search for Martian life. Int. J. Astrobiol. 2019, 19, 1–15.pl_PL
dc.referencesDasSarma, P.; Laye, V.; Harvey, J.; Reid, C.; Shultz, J.; Yarborough, A.; Lamb, A.; Koske-Phillips, A.; Herbst, A.; Molina, F.; et al. Survival of halophilic Archaea in Earth’s cold stratosphere. Int. J. Astrobiol. 2016, 16, 321–327.pl_PL
dc.referencesBecking, L.B. Geobiologie of Inleiding tot de Milieukunde; WP Van Stockum & Zoon: Amsterdam, The Netherlands, 1934.pl_PL
dc.referencesOren, A. Halophilic microbial communities and their environments. Curr. Opin. Biotechnol. 2015, 33, 119–124.pl_PL
dc.referencesShurigin, V.; Hakobyan, A.; Panosyan, H.; Egamberdieva, D.; Davranov, K.; Birkeland, N.-K. A glimpse of the prokaryotic diversity of the Large Aral Sea reveals novel extremophilic bacterial and archaeal groups. Microbiol. Open 2019, 8, e00850.pl_PL
dc.referencesSimachew, A.; Lanzén, A.; Gessesse, A.; Øvreås, L. Prokaryotic Community Diversity Along an Increasing Salt Gradient in a Soda Ash Concentration Pond. Microb. Ecol. 2015, 71, 326–338.pl_PL
dc.referencesBelilla, J.; Moreira, D.; Jardillier, L.; Reboul, G.; Benzerara, K.; López-García, J.M.; Bertolino, P.; López-Archilla, A.I.; López-García, P. Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat. Ecol. Evol. 2019, 3, 1552–1561.pl_PL
dc.referencesEdwardson, C.; Hollibaugh, J.T. Composition and Activity of Microbial Communities along the Redox Gradient of an Alkaline, Hypersaline, Lake. Front. Microbiol. 2018, 9, 14.pl_PL
dc.referencesMerino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 2019, 10, 780.pl_PL
dc.referencesPecher, W.T.; Martínez, F.L.; DasSarma, P.; Guzman, D.; DasSarma, S. 16S rRNA Gene Diversity in the Salt Crust of Salar de Uyuni, Bolivia, the World’s Largest Salt Flat. Microbiol. Resour. Announc. 2020, 9, 16–18.pl_PL
dc.referencesWilliams, T.J.; Allen, M.A.; DeMaere, M.; Kyrpides, N.; Tringe, S.; Woyke, T.; Cavicchioli, R. Microbial ecology of an Antarctic hypersaline lake: Genomic assessment of ecophysiology among dominant haloarchaea. ISME J. 2014, 8, 1645–1658.pl_PL
dc.referencesAlBataineh, H.; Stevens, D.C. Marine Myxobacteria: A Few Good Halophiles. Mar. Drugs 2018, 16, 209.pl_PL
dc.referencesGupta, S.; Sharma, P.; Dev, K.; Srivastava, M.; Sourirajan, A. A diverse group of halophilic bacteria exist in Lunsu, a natural salt water body of Himachal Pradesh, India. SpringerPlus 2015, 4, 274.pl_PL
dc.referencesLeboulanger, C.; Agogué, H.; Bernard, C.; Bouvy, M.; Carré, C.; Cellamare, M.; Duval, C.; Fouilland, E.; Got, P.; Intertaglia, L.; et al. Microbial Diversity and Cyanobacterial Production in Dziani Dzaha Crater Lake, a Unique Tropical Thalassohaline Environment. PLoS ONE 2017, 12, e0168879.pl_PL
dc.referencesMora-Ruiz, M.R.; Cifuentes, A.; Font-Verdera, F.; Pérez-Fernández, C.; Farias, M.E.; González, B.; Orfila, A.; Rosselló-Móra, R. Biogeographical patterns of bacterial and archaeal communities from distant hypersaline environments. Syst. Appl. Microbiol. 2018, 41, 139–150.pl_PL
dc.referencesUl-Hasan, S.; Bowers, R.M.; Figueroa-Montiel, A.; Licea-Navarro, A.F.; Beman, J.M.; Woyke, T.; Nobile, C.J. Community ecology across bacteria, archaea and microbial eukaryotes in the sediment and seawater of coastal Puerto Nuevo, Baja California. PLoS ONE 2019, 14, e0212355.pl_PL
dc.referencesSorokin, D.Y.; Berben, T.; Melton, E.D.; Overmars, L.; Vavourakis, C.; Muyzer, G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014, 18, 791–809.pl_PL
dc.referencesMcGenity, T. Methanogens and Methanogenesis in Hypersaline Environments. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin, Germany, 2010.pl_PL
dc.referencesOren, A. The microbiology of red brines. In Advances in Applied Microbiology; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 113, pp. 57–110. ISBN 9780128207093.pl_PL
dc.referencesBaxter, B.K.; Zalar, P. The extremophiles of Great Salt Lake: Complex microbiology in a dynamic hypersaline ecosystem. In Model Ecosystems in Extreme Environments; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 57–99pl_PL
dc.referencesBen Abdallah, M.; Karray, F.; Kallel, N.; Armougom, F.; Mhiri, N.; Quemeneur, M.; Cayol, J.-L.; Erauso, G.; Sayadi, S. Abundance and diversity of prokaryotes in ephemeral hypersaline lake Chott El Jerid using Illumina Miseq sequencing, DGGE and qPCR assays. Extremophiles 2018, 22, 811–823.pl_PL
dc.referencesAlmeida-Dalmet, S.; Sikaroodi, M.; Gillevet, P.M.; Litchfield, C.D.; Baxter, B.K. Temporal Study of the Microbial Diversity of the North Arm of Great Salt Lake, Utah, U.S. Microorganisms 2015, 3, 310–326.pl_PL
dc.referencesChen, S.; Xu, Y.; Helfant, L. Geographical Isolation, Buried Depth, and Physicochemical Traits Drive the Variation of Species Diversity and Prokaryotic Community in Three Typical Hypersaline Environments. Microorganisms 2020, 8, 120.pl_PL
dc.referencesDi Meglio, L.; Santos, F.; Gomariz, M.; Almansa, C.; López, C.; Anton, J.; Nercessian, D. Seasonal dynamics of extremely halophilic microbial communities in three Argentinian salterns. FEMS Microbiol. Ecol. 2016, 92.pl_PL
dc.referencesHaferburg, G.; Gröning, J.A.D.; Schmidt, N.; Kummer, N.-A.; Erquicia, J.C.; Schlömann, M. Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia. Microbiol. Res. 2017, 199, 19–28.pl_PL
dc.referencesKalwasi ´nska, A.; Deja-Sikora, E.; Burkowska-But, A.; Szabó, A.; Felföldi, T.; Kosobucki, P.; Krawiec, A.; Walczak, M. Changes in bacterial and archaeal communities during the concentration of brine at the graduation towers in Ciechocinek spa (Poland). Extremophiles 2017, 22, 233–246.pl_PL
dc.referencesCanfora, L.; Bacci, G.; Pinzari, F.; Papa, G.L.; Dazzi, C.; Benedetti, A. Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil? PLoS ONE 2014, 9, e106662.pl_PL
dc.referencesDelgado-García, M.; Contreras-Ramos, S.M.; Rodríguez, J.A.; Mateos-Díaz, J.C.; Aguilar, C.N.; Camacho-Ruíz, R.M. Isolation of halophilic bacteria associated with saline and alkaline-sodic soils by culture dependent approach. Heliyon 2018, 4, e00954.pl_PL
dc.referencesMukhtar, S.; Mehnaz, S.; Malik, K.A. Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crop improvement. Environ. Sustain. 2019, 2, 329–338.pl_PL
dc.referencesWang, S.; Sun, L.; Ling, N.; Zhu, C.; Chi, F.; Li, W.; Hao, X.; Zhang, W.; Bian, J.; Chen, L.; et al. Exploring Soil Factors Determining Composition and Structure of the Bacterial Communities in Saline-Alkali Soils of Songnen Plain. Front. Microbiol. 2020, 10, 2902.pl_PL
dc.referencesZhao, R.; Feng, J.; Yin, X.; Liu, J.; Fu, W.; Berendonk, T.U.; Zhang, T.; Li, X.; Li, B. Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis. Water Res. 2018, 134, 126–139.pl_PL
dc.referencesAcuña-Rodríguez, I.S.; Hansen, H.; Gallardo-Cerda, J.; Atala, C.; Molina-Montenegro, M.A. Antarctic Extremophiles: Biotechnological Alternative to Crop Productivity in Saline Soils. Front. Bioeng. Biotechnol. 2019, 7, 1–13.pl_PL
dc.referencesOtlewska, A.; Migliore, M.; Dybka-St ˛epie ´n, K.; Manfredini, A.; Struszczyk-Swita, K.; Napoli, R.; Białkowska, A.; Canfora, L.; ´ Pinzari, F. When Salt Meddles Between Plant, Soil, and Microorganisms. Front. Plant Sci. 2020, 11, 553087.pl_PL
dc.referencesPecher, W.T.; Al Madadha, M.E.; DasSarma, P.; Ekulona, F.; Schott, E.J.; Crowe, K.; Gut, B.S.; DasSarma, S. Effects of road salt on microbial communities: Halophiles as biomarkers of road salt pollution. PLoS ONE 2019, 14, e0221355.pl_PL
dc.referencesKim, J.Y.; Whon, T.W.; Lim, M.Y.; Kim, Y.B.; Kim, N.; Kwon, M.-S.; Kim, J.; Lee, S.H.; Choi, H.-J.; Nam, I.-H.; et al. The human gut archaeome: Identification of diverse haloarchaea in Korean subjects. Microbiome 2020, 8, 114.pl_PL
dc.referencesLagier, J.-C.; Khelaifia, S.; Azhar, E.; Croce, O.; Bibi, F.; Jiman-Fatani, A.A.; Yasir, M.; Ben Helaby, H.; Robert, C.; Fournier, P.-E.; et al. Genome sequence of Oceanobacillus picturae strain S1, an halophilic bacterium first isolated in human gut. Stand. Genom. Sci. 2015, 10, 91.pl_PL
dc.referencesRodriguez-Medina, J.; Kim, H.G.; Castro, J.; Contreras, C.M.; Glon, C.L.; Goyal, A.; Guo, B.Y.; Knowles, S.; Lin, J.C.; McGuiness, C.L.; et al. Draft Genome Sequences of 16 Halophilic Prokaryotes Isolated from Diverse Environments. Microbiol. Resour. Announc. 2020, 9, 20–22.pl_PL
dc.referencesSeck, E.H.; Senghor, B.; Merhej, V.; Bachar, D.; Cadoret, F.; Robert, C.; Azhar, E.; Yasir, M.; Bibi, F.; Jiman-Fatani, A.A.; et al. Salt in stools is associated with obesity, gut halophilic microbiota and Akkermansia muciniphila depletion in humans. Int. J. Obes. 2018, 43, 862–871.pl_PL
dc.referencesEnomoto, S.; Shimane, Y.; Ihara, K.; Kamekura, M.; Itoh, T.; Ohkuma, M.; Takahashi-Ando, N.; Fukushima, Y.; Yoshida, Y.; Usami, R.; et al. Haloarcula mannanilytica sp. nov., a galactomannan-degrading haloarchaeon isolated from commercial salt. Int. J. Syst. Evol. Microbiol. 2020, 70, 6331–6337.pl_PL
dc.referencesGibtan, A.; Park, K.; Woo, M.; Shin, J.-K.; Lee, D.-W.; Sohn, J.H.; Song, M.; Roh, S.W.; Lee, S.-J.; Lee, H.-S. Diversity of Extremely Halophilic Archaeal and Bacterial Communities from Commercial Salts. Front. Microbiol. 2017, 8, 799.pl_PL
dc.referencesMinegishi, H.; Echigo, A.; Kuwahara, A.; Shimane, Y.; Kamekura, M.; Itoh, T.; Ohkuma, M.; Usami, R. Halocalculus aciditolerans gen. nov., sp. nov., an acid-tolerant haloarchaeon isolated from commercial salt. Int. J. Syst. Evol. Microbiol. 2015, 65, 1640–1645.pl_PL
dc.referencesSeck, E.H.; Dufour, J.-C.; Raoult, D.; Lagier, J.-C. Halophilic & halotolerant prokaryotes in humans. Futur. Microbiol. 2018, 13, 799–812.pl_PL
dc.referencesAnast, J.M.; Dzieciol, M.; Schultz, D.L.; Wagner, M.; Mann, E.; Schmitz-Esser, S. Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment. Sci. Rep. 2019, 9, 6164.pl_PL
dc.referencesIshikawa, M.; Kodama, K.; Yasuda, H.; Okamoto-Kainuma, A.; Koizumi, K.; Yamasato, K. Presence of halophilic and alkaliphilic lactic acid bacteria in various cheeses. Lett. Appl. Microbiol. 2006, 44, 308–313.pl_PL
dc.referencesSuzuki, T.; Matsutani, M.; Matsuyama, M.; Unno, R.; Matsushita, H.; Sugiyama, M.; Yamasato, K.; Koizumi, Y.; Ishikawa, M. Growth and metabolic properties of halophilic and alkaliphilic lactic acid bacterial strains of Marinilactibacillus psychrotolerans isolated from surface-ripened soft cheese. Int. Dairy J. 2020, 112, 104840.pl_PL
dc.referencesJonnala, B.R.Y.; McSweeney, P.L.H.; Sheehan, J.J.; Cotter, P.D. Sequencing of the Cheese Microbiome and Its Relevance to Industry. Front. Microbiol. 2018, 9, 1020.pl_PL
dc.referencesYalçınkaya, S.; Kılıç, G.B. Isolation, identification and determination of technological properties of the halophilic lactic acid bacteria isolated from table olives. J. Food Sci. Technol. 2019, 56, 2027–2037.pl_PL
dc.referencesJang, J.-Y.; Oh, Y.J.; Lim, S.K.; Park, H.K.; Lee, C.; Kim, J.Y.; Lee, M.-A.; Choi, H.-J. Salicibibacter kimchii gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium in the family Bacillaceae, isolated from kimchi. J. Microbiol. 2018, 56, 880–885.pl_PL
dc.referencesOh, Y.J.; Kim, J.Y.; Park, H.K.; Jang, J.-Y.; Lim, S.K.; Kwon, M.-S.; Choi, H.-J. Salicibibacter halophilus sp. nov., a moderately halophilic bacterium isolated from kimchi. J. Microbiol. 2019, 57, 997–1002.pl_PL
dc.referencesOh, Y.J.; Kim, J.Y.; Jo, H.E.; Park, H.K.; Lim, S.K.; Kwon, M.-S.; Choi, H.-J. Lentibacillus cibarius sp. nov., isolated from kimchi, a Korean fermented food. J. Microbiol. 2020, 58, 387–394.pl_PL
dc.referencesBooncharoen, A.; Visessanguan, W.; Kuncharoen, N.; Yiamsombut, S.; Santiyanont, P.; Mhuantong, W.; Charoensri, S.; Rojsitthisak, P.; Tanasupawat, S. Lentibacillus lipolyticus sp. nov., a moderately halophilic bacterium isolated from shrimp paste (Ka-pi). Int. J. Syst. Evol. Microbiol. 2019, 69, 3529–3536.pl_PL
dc.referencesLi, K.; Sang, X.; Zhu, Y.; Zhang, G.; Bi, J.; Hao, H.; Hou, H.; Qian, F. Lentibacillus panjinensis sp. nov., Isolated from Shrimp Paste, a Traditional Chinese Fermented Seafood. Curr. Microbiol. 2020, 77, 1997–2001.pl_PL
dc.referencesDiop, A.; Seck, E.H.; Dubourg, G.; Armstrong, N.; Blanc-Tailleur, C.; Raoult, D.; Fournier, P. Genome sequence and description ofGracilibacillus timonensissp. nov. strain Marseille-P2481T, a moderate halophilic bacterium isolated from the human gut microflora. Microbiol. Open 2018, 8, e00638.pl_PL
dc.referencesKhelaifia, S.; Lagier, J.-C.; Bibi, F.; Azhar, E.I.; Croce, O.; Padmanabhan, R.; Jiman-Fatani, A.A.; Yasir, M.; Robert, C.; Andrieu, C.; et al. Microbial Culturomics to Map Halophilic Bacterium in Human Gut: Genome Sequence and Description of Oceanobacillus jeddahense sp. nov. OMICS A J. Integr. Biol. 2016, 20, 248–258.pl_PL
dc.referencesNgom, I.I.; Hasni, I.; Senghor, B.; Lo, C.I.; Armstrong, N.; Sokhna, C.; Raoult, D.; Fournier, P.-E.; Lagier, J.-C. Description of Gracilibacillus phocaeensis sp. nov., a new halophilic bacterium isolated from Senegalian human stool. New Microbes New Infect. 2020, 38, 100799.pl_PL
dc.referencesAmoozegar, M.A.; Siroosi, M.; Atashgahi, S.; Smidt, H.; Ventosa, A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 2017, 163, 623–645.pl_PL
dc.references. Desai, C.; Patel, P.; Markande, A.R.; Kamala, K.; Sivaperumal, P. Exploration of haloarchaea for their potential applications in food industry. Int. J. Environ. Sci. Technol. 2020, 17, 4455–4464.pl_PL
dc.referencesRodrigo-Baños, M.; Garbayo, I.; Vílchez, C.; Bonete, M.-J.; Martínez-Espinosa, R.M. Carotenoids from Haloarchaea and Their Potential in Biotechnology. Mar. Drugs 2015, 13, 5508–5532.pl_PL
dc.referencesSingh, A.; Singh, A.K. Haloarchaea: Worth exploring for their biotechnological potential. Biotechnol. Lett. 2017, 39, 1793–1800.pl_PL
dc.referencesGómez-Villegas, P.; Vigara, J.; Vila, M.; Varela, J.; Barreira, L.; Léon, R. Antioxidant, Antimicrobial, and Bioactive Potential of Two New Haloarchaeal Strains Isolated from Odiel Salterns (Southwest Spain). Biology 2020, 9, 298.pl_PL
dc.referencesGhanmi, F.; Carré-Mlouka, A.; Zarai, Z.; Mejdoub, H.; Peduzzi, J.; Maalej, S.; Rebuffat, S. The extremely halophilic archaeon Halobacterium salinarum ETD5 from the solar saltern of Sfax (Tunisia) produces multiple halocins. Res. Microbiol. 2019, 171, 80–90.pl_PL
dc.referencesMakarova, K.S.; Wolf, Y.; Karamycheva, S.; Zhang, D.; Aravind, L.; Koonin, E.V. Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: An Untapped Armory for Intermicrobial Conflicts. mBio 2019, 10, e00715-19.pl_PL
dc.referencesShirazian, P.; Asad, S.; Amoozegar, M.A. The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase. EXCLI J. 2016, 15, 268–279.pl_PL
dc.referencesZolfaghar, M.; Amoozegar, M.A.; Khajeh, K.; Babavalian, H.; Tebyanian, H. Isolation and screening of extracellular anticancer enzymes from halophilic and halotolerant bacteria from different saline environments in Iran. Mol. Biol. Rep. 2019, 46, 3275–3286.pl_PL
dc.referencesDe Castro, I.; Mendo, S.; Caetano, T. Antibiotics from Haloarchaea: What Can We Learn from Comparative Genomics? Mar. Biotechnol. 2020, 22, 308–316.pl_PL
dc.referencesOthoum, G.; Bougouffa, S.; Razali, R.; Bokhari, A.; Alamoudi, S.; Antunes, A.; Gao, X.; Hoehndorf, R.; Arold, S.T.; Gojobori, T.; et al. In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters. BMC Genom. 2018, 19, 382.pl_PL
dc.referencesOthoum, G.; Bougouffa, S.; Bokhari, A.; Lafi, F.F.; Gojobori, T.; Hirt, H.; Mijakovic, I.; Bajic, V.B.; Essack, M. Mining biosynthetic gene clusters in Virgibacillus genomes. BMC Genom. 2019, 20, 1–10.pl_PL
dc.referencesOthoum, G.; Prigent, S.; Derouiche, A.; Shi, L.; Bokhari, A.; Alamoudi, S.; Bougouffa, S.; Gao, X.; Hoehndorf, R.; Arold, S.T.; et al. Comparative genomics study reveals Red Sea Bacillus with characteristics associated with potential microbial cell factories (MCFs). Sci. Rep. 2019, 9, 19254.pl_PL
dc.referencesZiko, L.; Adel, M.; Malash, M.; Siam, R. Insights into Red Sea Brine Pool Specialized Metabolism Gene Clusters Encoding Potential Metabolites for Biotechnological Applications and Extremophile Survival. Mar. Drugs 2019, 17, 273.pl_PL
dc.referencesWang, H.; Fewer, D.; Holm, L.; Rouhiainen, L.; Sivonen, K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc. Natl. Acad. Sci. USA 2014, 111, 9259–9264.pl_PL
dc.referencesOren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 2002, 28, 56–63.pl_PL
dc.referencesChoi, J.; Lee, D.; Jang, J.H.; Cha, S.; Seo, T. Aestuariibaculum marinum sp. nov., a marine bacterium isolated from seawater in South Korea. J. Microbiol. 2018, 56, 614–618.pl_PL
dc.referencesSingh, S.; Sran, K.S.; Pinnaka, A.K.; Choudhury, A.R. Purification, characterization and functional properties of exopolysaccharide from a novel halophilic Natronotalea sambharensis sp. nov. Int. J. Biol. Macromol. 2019, 136, 547–558.pl_PL
dc.referencesFariq, A.; Yasmin, A. Production, characterization and bioactivities of biosurfactants from newly isolated strictly halophilic bacteria. Process. Biochem. 2020, 98, 1–10.pl_PL
dc.referencesSolden, L.; Lloyd, K.; Wrighton, K. The bright side of microbial dark matter: Lessons learned from the uncultivated majority. Curr. Opin. Microbiol. 2016, 31, 217–226.pl_PL
dc.referencesLagier, J.-C.; Khelaifia, S.; Alou, M.T.; Ndongo, S.; Dione, N.; Hugon, P.; Caputo, A.; Cadoret, F.; Traore, S.I.; Seck, E.H.; et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 2016, 1, 16203.pl_PL
dc.referencesNowrotek, M.; Jałowiecki, Ł.; Harnisz, M.; Płaza, G.A. Culturomics and metagenomics: In understanding of environmental resistome. Front. Environ. Sci. Eng. 2019, 13, 40.pl_PL
dc.referencesPeng, P.; Lu, Y.; Bosma, T.N.P.; Nijenhuis, I.; Nijsse, B.; Shetty, S.A.; Ruecker, A.; Umanets, A.; Ramiro-Garcia, J.; Kappler, A.; et al. Metagenomic- and Cultivation-Based Exploration of Anaerobic Chloroform Biotransformation in Hypersaline Sediments as Natural Source of Chloromethanes. Microorganisms 2020, 8, 665.pl_PL
dc.referencesLaudadio, I.; Fulci, V.; Stronati, L.; Carissimi, C. Next-Generation Metagenomics: Methodological Challenges and Opportunities. OMICS A J. Integr. Biol. 2019, 23, 327–333.pl_PL
dc.referencesCowan, D.A.; Ramond, J.-B.; Makhalanyane, T.P.; De Maayer, P. Metagenomics of extreme environments. Curr. Opin. Microbiol. 2015, 25, 97–102.pl_PL
dc.referencesUritskiy, G.; DiRuggiero, J. Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome. Genes 2019, 10, 220.pl_PL
dc.referencesTutuncu, H.E.; Balci, N.; Tuter, M.; Karaguler, N.G. Recombinant production and characterization of a novel esterase from a hypersaline lake, Acıgöl, by metagenomic approach. Extremophiles 2019, 23, 507–520.pl_PL
dc.referencesLi, Z.; Li, X.; Liu, T.; Chen, S.; Liu, H.; Wang, H.; Li, K.; Song, Y.; Luo, X.; Zhao, J.; et al. The critical roles of exposed surface residues for the thermostability and halotolerance of a novel GH11 xylanase from the metagenomic library of a saline-alkaline soil. Int. J. Biol. Macromol. 2019, 133, 316–323.pl_PL
dc.referencesMagnuson, E.; Mykytczuk, N.C.; Pellerin, A.; Goordial, J.; Twine, S.M.; Wing, B.; Foote, S.J.; Fulton, K.; Whyte, L.G. Thiomicrorhabdus streamers and sulfur cycling in perennial hypersaline cold springs in the Canadian high Arctic. Environ. Microbiol. 2020, 23, 3384–3400.pl_PL
dc.referencesUritskiy, G.; Tisza, M.J.; Gelsinger, D.R.; Munn, A.; Taylor, J.; DiRuggiero, J. Cellular life from the three domains and viruses are transcriptionally active in a hypersaline desert community. Environ. Microbiol. 2020, 23, 3401–3417.pl_PL
dc.referencesRamos-Barbero, M.D.; Martin-Cuadrado, A.-B.; Viver, T.; Santos, F.; Martinez-Garcia, M.; Antón, J. Recovering microbial genomes from metagenomes in hypersaline environments: The Good, the Bad and the Ugly. Syst. Appl. Microbiol. 2018, 42, 30–40.pl_PL
dc.referencesVogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13, 227–232.pl_PL
dc.referencesCeylan, S.; Yilan, G.; Akbulut, B.S.; Poli, A.; Kazan, D. Interplay of adaptive capabilities of Halomonas sp. AAD12 under salt stress. J. Biosci. Bioeng. 2012, 114, 45–52.pl_PL
dc.referencesBidle, K.A.; Kirkland, P.A.; Nannen, J.L.; Maupin-Furlow, J. Proteomic analysis of Haloferax volcanii reveals salinity-mediated regulation of the stress response protein PspA. Microbiology 2008, 154, 1436–1443.pl_PL
dc.referencesSevim, V.; Lee, J.; Egan, R.; Clum, A.; Hundley, H.; Lee, J.; Everroad, R.C.; Detweiler, A.M.; Bebout, B.M.; Pett-Ridge, J.; et al. Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies. Sci. Data 2019, 6, 285.pl_PL
dc.referencesSato, M.P.; Ogura, Y.; Nakamura, K.; Nishida, R.; Gotoh, Y.; Hayashi, M.; Hisatsune, J.; Sugai, M.; Takehiko, I.; Hayashi, T. Comparison of the sequencing bias of currently available library preparation kits for Illumina sequencing of bacterial genomes and metagenomes. DNA Res. 2019, 26, 391–398.pl_PL
dc.referencesJain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; Fiddes, I.T.; et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 2018, 36, 338–345.pl_PL
dc.referencesLim, A.; Naidenov, B.; Bates, H.; Willyerd, K.; Snider, T.; Couger, M.B.; Chen, C.; Ramachandran, A. Nanopore ultra-long read sequencing technology for antimicrobial resistance detection in Mannheimia haemolytica. J. Microbiol. Methods 2019, 159, 138–147.pl_PL
dc.referencesOmachi, H.; Terahara, T.; Futami, K.; Kawato, S.; Imada, C.; Kamei, K.; Waku, T.; Kondo, A.; Naganuma, T.; Agustini, T.W.; et al. Distribution of class IId bacteriocin-producing Virgibacillus salexigens in various environments. World J. Microbiol. Biotechnol. 2021, 37, 1–12.pl_PL
dc.referencesTafer, H.; Poyntner, C.; Lopandic, K.; Sterflinger, K.; Piñar, G. Back to the Salt Mines: Genome and Transcriptome Comparisons of the Halophilic Fungus Aspergillus salisburgensis and Its Halotolerant Relative Aspergillus sclerotialis. Genes 2019, 10, 381.pl_PL
dc.referencesLoman, N.J.; Quick, J.; Simpson, J.T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 2015, 12, 733–735.pl_PL
dc.referencesWick, R.R.; Judd, L.M.; Holt, K.E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 2019, 20, 1–10.pl_PL
dc.referencesCali, D.S.; Kim, J.S.; Ghose, S.; Alkan, C.; Mutlu, O. Nanopore sequencing technology and tools for genome assembly: Computational analysis of the current state, bottlenecks and future directions. Briefings Bioinform. 2018, 20, 1542–1559.pl_PL
dc.referencesBlin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35.pl_PL
dc.referencesWaghmode, S.; Suryavanshi, M.; Dama, L.; Kansara, S.; Ghattargi, V.; Das, P.; Banpurkar, A.; Satpute, S.K. Genomic Insights of Halophilic Planococcus maritimus SAMP MCC 3013 and Detail Investigation of Its Biosurfactant Production. Front. Microbiol. 2019, 10, 235.pl_PL
dc.referencesWaghmode, S.; Swami, S.; Sarkar, D.; Suryavanshi, M.; Roachlani, S.; Choudhari, P.; Satpute, S. Exploring the Pharmacological Potentials of Biosurfactant Derived from Planococcus maritimus SAMP MCC 3013. Curr. Microbiol. 2020, 77, 452–459.pl_PL
dc.referencesDaas, M.S.; Acedo, J.; Rosana, A.R.; Orata, F.; Reiz, B.; Zheng, J.; Nateche, F.; Case, R.J.; Kebbouche-Gana, S.; Vederas, J.C. Bacillus amyloliquefaciens ssp. plantarum F11 isolated from Algerian salty lake as a source of biosurfactants and bioactive lipopeptides. FEMS Microbiol. Lett. 2017, 365, fnx248.pl_PL
dc.referencesChen, R.; Wong, A.H.L.; Kindler, G.S.; MacLeod, F.I.; Benaud, N.; Ferrari, B.C.; Burns, B.P. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Front. Microbiol. 2020, 11, 1950.pl_PL
dc.referencesDonio, M.B.S.; Ronica, S.F.A.; Viji, V.T.; Velmurugan, S.; Jenifer, J.A.; Michaelbabu, M.; Citarasu, T. Isolation and characterization of halophilic Bacillus sp. BS3 able to produce pharmacologically important biosurfactants. Asian Pac. J. Trop. Med. 2013, 6, 876–883.pl_PL
dc.referencesLlamas, I.; Amjres, H.; Mata, J.A.; Quesada, E.; Béjar, V. The Potential Biotechnological Applications of the Exopolysaccharide Produced by the Halophilic Bacterium Halomonas almeriensis. Molecules 2012, 17, 7103–7120.pl_PL
dc.referencesHaque, E.; Bin Riyaz, M.A.; Shankar, S.; Hassan, S. Physiochemical and Structural Characterization of Biosurfactant Produced by Halophilic Pseudomonas aeruginosa ENO14 Isolated from Seawater. Int. J. Pharm. Investig. 2020, 10, 437–444.pl_PL
dc.referencesSchultz, J.; Rosado, A.S. Extreme environments: A source of biosurfactants for biotechnological applications. Extremophiles 2019, 24, 189–206.pl_PL
dc.referencesGomes, M.B.; Gonzales-Limache, E.E.; Sousa, S.; Dellagnezze, B.; Sartoratto, A.; Silva, L.C.F.; Gieg, L.M.; Valoni, E.; Souza, R.S.; Torres, A.P.R.; et al. Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int. Biodeterior. Biodegrad. 2018, 126, 231–242.pl_PL
dc.referencesPastor, J.M.; Salvador, M.; Argandoña, M.; Bernal, V.; Reina-Bueno, M.; Csonka, L.N.; Iborra, J.L.; Vargas, C.; Nieto, J.J.; Cánovas, M. Ectoines in cell stress protection: Uses and biotechnological production. Biotechnol. Adv. 2010, 28, 782–801.pl_PL
dc.referencesBownik, A.; Stępniewska, Z. Ectoine as a promising protective agent in humans and animals. Arch. Ind. Hyg. Toxicol. 2016, 67, 260–265.pl_PL
dc.referencesNosch, D.S.; Joos, R.E.; Job, M. Prospective randomized study to evaluate the efficacy and tolerability of Ectoin®containing Eye Spray (EES09) and comparison to the liposomal Eye Spray Tears Again®(TA) in the treatment of dry eye disease. Contact Lens Anterior Eye 2021, 44, 101318.pl_PL
dc.referencesBilstein, A.; Heinrich, A.; Rybachuk, A.; Mösges, R. Ectoine in the Treatment of Irritations and Inflammations of the Eye Surface. BioMed Res. Int. 2021, 2021, 8885032.pl_PL
dc.referencesTran, B.-H.; Dao, V.-A.; Bilstein, A.; Unfried, K.; Shah-Hosseini, K.; Mösges, R. Ectoine-Containing Inhalation Solution versus Saline Inhalation Solution in the Treatment of Acute Bronchitis and Acute Respiratory Infections: A Prospective, Controlled, Observational Study. BioMed Res. Int. 2019, 2019, 7945091.pl_PL
dc.referencesBilstein, A.; Werkhäuser, N.; Rybachuk, A.; Mösges, R. The Effectiveness of the Bacteria Derived Extremolyte Ectoine for the Treatment of Allergic Rhinitis. BioMed Res. Int. 2021, 2021, 5562623.pl_PL
dc.referencesMoh, T.H.; Lau, N.S.; Furusawa, G.; Amirul, A.-A.A. Complete genome sequence of Microbulbifer sp. CCB-MM1, a halophile isolated from Matang Mangrove Forest, Malaysia. Stand. Genom. Sci. 2017, 12, 36pl_PL
dc.referencesVan Thuoc, D.; Loan, T.T.; Trung, T.A.; Van Quyen, N.; Tung, Q.N.; Tien, P.Q.; Sudesh, K. Genome Mining Reveals the Biosynthetic Pathways of Polyhydroxyalkanoate and Ectoines of the Halophilic Strain Salinivibrio proteolyticus M318 Isolated from Fermented Shrimp Paste. Mar. Biotechnol. 2020, 22, 651–660.pl_PL
dc.referencesFrikha-Dammak, D.; Ayadi, H.; Hakim-Rekik, I.; Belbahri, L.; Maalej, S. Genome analysis of the salt-resistant Paludifilum halophilum DSM 102817T reveals genes involved in flux-tuning of ectoines and unexplored bioactive secondary metabolites. World J. Microbiol. Biotechnol. 2021, 37, 1–15.pl_PL
dc.referencesMetelev, M.; Tietz, J.; Melby, J.O.; Blair, P.M.; Zhu, L.; Livnat, I.; Severinov, K.; Mitchell, D.A. Structure, Bioactivity, and Resistance Mechanism of Streptomonomicin, an Unusual Lasso Peptide from an Understudied Halophilic Actinomycete. Chem. Biol. 2015, 22, 241–250.pl_PL
dc.referencesPetrillo, C.; Castaldi, S.; Lanzilli, M.; Selci, M.; Cordone, A.; Giovannelli, D.; Isticato, R. Genomic and Physiological Characterization of Bacilli Isolated From Salt-Pans With Plant Growth Promoting Features. Front. Microbiol. 2021, 12, 715678.pl_PL
dc.referencesGhate, S.D.; Arun, A.B.; Rao, S.S.; Kumar, S.T.A.; Kandiyil, M.K.; Saptami, K.; Rekha, P.D. Genome analysis of a halophilic bacterium Halomonas malpeensis YU-PRIM-29T reveals its exopolysaccharide and pigment producing capabilities. Sci. Rep. 2021, 11, 1749.pl_PL
dc.referencesMatroodi, S.; Siitonen, V.; Baral, B.; Yamada, K.; Akhgari, A.; Metsä-Ketelä, M. Genotyping-Guided Discovery of Persiamycin A From Sponge-Associated Halophilic Streptomonospora sp. PA3. Front. Microbiol. 2020, 11, 1237.pl_PL
dc.referencesYang, H.W.; Song, J.Y.; Cho, S.M.; Kwon, H.C.; Pan, C.-H.; Park, Y.-I. Genomic Survey of Salt Acclimation-Related Genes in the Halophilic Cyanobacterium Euhalothece sp. Z-M001. Sci. Rep. 2020, 10, 676.pl_PL
dc.referencesBaltz, R.H. Genome mining for drug discovery: Progress at the front end. J. Ind. Microbiol. Biotechnol. 2021.pl_PL
dc.referencesBlin, K.; Kim, H.U.; Medema, M.H.; Weber, T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief. Bioinform. 2017, 20, 1103–1113.pl_PL
dc.referencesZiemert, N.; Podell, S.; Penn, K.; Badger, J.H.; Allen, E.; Jensen, P.R. The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity. PLoS ONE 2012, 7, e34064.pl_PL
dc.referencesReddy, B.V.B.; Milshteyn, A.; Charlop-Powers, Z.; Brady, S.F. eSNaPD: A Versatile, Web-Based Bioinformatics Platform for Surveying and Mining Natural Product Biosynthetic Diversity from Metagenomes. Chem. Biol. 2014, 21, 1023–1033.pl_PL
dc.referencesMeleshko, D.; Mohimani, H.; Tracanna, V.; Hajirasouliha, I.; Medema, M.H.; Korobeynikov, A.; Pevzner, P.A.; Traccana, V. BiosyntheticSPAdes: Reconstructing biosynthetic gene clusters from assembly graphs. Genome Res. 2019, 29, 1352–1362.pl_PL
dc.referencesKautsar, S.A.; Blin, K.; Shaw, S.; Navarro-Muñoz, J.C.; Terlouw, B.R.; Van Der Hooft, J.J.J.; Van Santen, J.A.; Tracanna, V.; Duran, H.G.S.; Andreu, V.P.; et al. MIBiG 2.0: A repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 2019, 48, D454–D458.pl_PL
dc.referencesPalaniappan, K.; Chen, I.-M.A.; Chu, K.; Ratner, A.; Seshadri, R.; Kyrpides, N.; Ivanova, N.N.; Mouncey, N.J. IMG-ABC v.5.0: An update to the IMG/Atlas of Biosynthetic Gene Clusters Knowledgebase. Nucleic Acids Res. 2019, 48, D422–D430.pl_PL
dc.referencesBlin, K.; Shaw, S.; Kautsar, S.A.; Medema, M.H.; Weber, T. The antiSMASH database version 3: Increased taxonomic coverage and new query features for modular enzymes. Nucleic Acids Res. 2020, 49, D639–D643.pl_PL
dc.referencesBairoch, A. The ENZYME database in 2000. Nucleic Acids Res. 2000, 28, 304–305.pl_PL
dc.referencesChang, A.; Jeske, L.; Ulbrich, S.; Hofmann, J.; Koblitz, J.; Schomburg, I.; Neumann-Schaal, M.; Jahn, D.; Schomburg, D. BRENDA, the ELIXIR core data resource in 2021: New developments and updates. Nucleic Acids Res. 2020, 49, D498–D508.pl_PL
dc.referencesKanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016, 45, D353–D361.pl_PL
dc.referencesMistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2020, 49, D412–D419.pl_PL
dc.referencesHaft, D.H.; Selengut, J.D.; Richter, R.A.; Harkins, D.; Basu, M.K.; Beck, E. TIGRFAMs and Genome Properties in 2013. Nucleic Acids Res. 2012, 41, D387–D395.pl_PL
dc.referencesLetunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2020, 49, D458–D460.pl_PL
dc.referencesDelgado-García, M.; Valdivia-Urdiales, B.; Aguilar, C.N.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R. Halophilic hydrolases as a new tool for the biotechnological industries. J. Sci. Food Agric. 2012, 92, 2575–2580.pl_PL
dc.referencesDalmaso, G.Z.L.; Ferreira, D.; Vermelho, A.B. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications. Mar. Drugs 2015, 13, 1925–1965.pl_PL
dc.referencesAmoozegar, M.A.; Safarpour, A.; Noghabi, K.A.; Bakhtiary, T.; Ventosa, A. Halophiles and Their Vast Potential in Biofuel Production. Front. Microbiol. 2019, 10, 1895.pl_PL
dc.referencesMotamedi, E.; Motahar, S.F.S.; Maleki, M.; Kavousi, K.; Ariaeenejad, S.; Moosavi-Movahedi, A.A.; Salekdeh, G.H. Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel. Cellulose 2021, 28, 3485–3503.pl_PL
dc.referencesMarchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2016, 45, D200–D203.pl_PL
dc.referencesKoutsandreas, T.; Ladoukakis, E.; Pilalis, E.; Zarafeta, D.; Kolisis, F.N.; Skretas, G.; Chatziioannou, A.A. ANASTASIA: An Automated Metagenomic Analysis Pipeline for Novel Enzyme Discovery Exploiting Next Generation Sequencing Data. Front. Genet. 2019, 10, 469.pl_PL
dc.referencesShahraki, M.F.; Ariaeenejad, S.; Atanaki, F.F.; Zolfaghari, B.; Koshiba, T.; Kavousi, K.; Salekdeh, G.H. MCIC: Automated Identification of Cellulases From Metagenomic Data and Characterization Based on Temperature and pH Dependence. Front. Microbiol. 2020, 11, 567863.pl_PL
dc.referencesSung, J.-Y.; Lee, Y.-J.; Cho, Y.-J.; Shin, M.-N.; Lee, S.-J.; Lee, H.-S.; Koh, H.; Bae, J.-W.; Shin, J.-H.; Kim, H.J.; et al. A large-scale metagenomic study for enzyme profiles using the focused identification of the NGS-based definitive enzyme research (FINDER) strategy. Biotechnol. Bioeng. 2021, 118, 4360–4374.pl_PL
dc.referencesKang, X.; Dong, F.; Shi, C.; Liu, S.; Sun, J.; Chen, J.; Li, H.; Xu, H.; Lao, X.; Zheng, H. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci. Data 2019, 6, 1–10.pl_PL
dc.referencesWaghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides: Table 1. Nucleic Acids Res. 2015, 44, D1094–D1097.pl_PL
dc.referencesWang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2015, 44, D1087–D1093.pl_PL
dc.referencesZhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: A Database Linking Antimicrobial Peptides. PLoS ONE 2013, 8, e66557.pl_PL
dc.referencesLiu, S.; Fan, L.; Sun, J.; Lao, X.; Zheng, H. Computational resources and tools for antimicrobial peptides. J. Pept. Sci. 2016, 23, 4–12.pl_PL
dc.referencesBesse, A.; Vandervennet, M.; Goulard, C.; Peduzzi, J.; Isaac, S.; Rebuffat, S.; Carré-Mlouka, A. Halocin C8: An antimicrobial peptide distributed among four halophilic archaeal genera: Natrinema, Haloterrigena, Haloferax, and Halobacterium. Extremophiles 2017, 21, 623–638.pl_PL
dc.referencesSantos-Júnior, C.D.; Pan, S.; Zhao, X.-M.; Coelho, L.P. Macrel: Antimicrobial peptide screening in genomes and metagenomes. PeerJ 2020, 8, e10555.pl_PL
dc.referencesSpänig, S.; Heider, D. Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Min. 2019, 12, 7.pl_PL
dc.referencesGull, S.; Shamim, N.; Minhas, F. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides. Comput. Biol. Med. 2019, 107, 172–181.pl_PL
dc.referencesBhadra, P.; Yan, J.; Li, J.; Fong, S.; Siu, S.W.I. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci. Rep. 2018, 8, 1697.pl_PL
dc.referencesManikandan, P.; Moopantakath, J.; Imchen, M.; Kumavath, R.; SenthilKumar, P.K. Identification of Multi-Potent Protein Subtilisin A from halophilic bacterium Bacillus firmus VE2. Microb. Pathog. 2021, 157, 105007.pl_PL
dc.referencesPlatas, G.; Meseguer, I.; Amils, R. Purification and biological characterization of halocin H1 from Haloferax mediterranei M2a. Int. Microbiol. 2002, 5, 15–19.pl_PL
dc.referencesRodriguez-Valera, F.; Juez, G.; Kushner, D.J. Halocins: Salt-dependent bacteriocins produced by extremely halophilic rods. Can. J. Microbiol. 1982, 28, 151–154.pl_PL
dc.referencesMeseguer, I.; Rodriguez-Valera, F. Production and purification of halocin H4. FEMS Microbiol. Lett. 1985, 28, 177–182.pl_PL
dc.referencesKarthikeyan, P.; Bhat, S.G.; Chandrasekaran, M. Halocin SH10 production by an extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India. Saudi J. Biol. Sci. 2013, 20, 205–212.pl_PL
dc.referencesMajumder, A.; Biswal, M.R.; Prakash, M.K. Computational screening of antimicrobial peptides for Acinetobacter baumannii. PLoS ONE 2019, 14, e0219693.pl_PL
dc.referencesPatch, J.; Barron, A. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept. Lett. 2019, 27, 4–16.pl_PL
dc.referencesSkinnider, M.A.; Johnston, C.W.; Gunabalasingam, M.; Merwin, N.J.; Kieliszek, A.M.; MacLellan, R.J.; Li, H.; Ranieri, M.R.M.; Webster, A.L.H.; Cao, M.P.T.; et al. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat. Commun. 2020, 11, 6058.pl_PL
dc.referencesKhaldi, N.; Seifuddin, F.T.; Turner, G.; Haft, D.; Nierman, W.C.; Wolfe, K.; Fedorova, N.D. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 2010, 47, 736–741.pl_PL
dc.referencesVan Heel, A.J.; De Jong, A.; Montalbán-López, M.; Kok, J.; Kuipers, O.P. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 2013, 41, W448–W453.pl_PL
dc.referencesSélem-Mojica, N.; Aguilar, C.; Gutiérrez-García, K.; Martínez-Guerrero, C.E.; Barona-Gómez, F. EvoMining reveals the origin and fate of natural product biosynthetic enzymes. Microb. Genom. 2019, 5, e000260.pl_PL
dc.referencesCimermancic, P.; Medema, M.H.; Claesen, J.; Kurita, K.; Brown, L.C.W.; Mavrommatis, K.; Pati, A.; Godfrey, P.A.; Koehrsen, M.; Clardy, J.; et al. Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters. Cell 2014, 158, 412–421.pl_PL
dc.referencesAltschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.pl_PL
dc.referencesDasSarma, S.; DasSarma, P.; Laye, V.J.; Schwieterman, E.W. Extremophilic models for astrobiology: Haloarchaeal survival strategies and pigments for remote sensing. Extremophiles 2019, 24, 31–41.pl_PL
dc.referencesWaditee-Sirisattha, R.; Kageyama, H.; Takabe, T. Halophilic microorganism resources and their applications in industrial and environmental biotechnology. AIMS Microbiol. 2016, 2, 42–54.pl_PL
dc.contributor.authorEmailpaulina.jecz@biol.uni.lodz.plpl_PL
dc.contributor.authorEmailJakub.lach@biol.uni.lodz.plpl_PL
dc.contributor.authorEmaildominik.strapagiel@biol.uni.lodz.plpl_PL
dc.contributor.authorEmailagnieszka.matera-witkiewicz@umed.wroc.plpl_PL
dc.contributor.authorEmailpawel.staczek@biol.uni.lodz.plpl_PL
dc.identifier.doi10.3390/genes12111756
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe