dc.contributor.author | Gonciarz, Weronika | |
dc.contributor.author | Chyb, Maciej | |
dc.contributor.author | Chmiela, Magdalena | |
dc.date.accessioned | 2023-05-09T07:23:03Z | |
dc.date.available | 2023-05-09T07:23:03Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Gonciarz Weronika, Chyb Maciej, Mikołajczyk-Chmiela Magdalena: Mycobacterium bovis BCG increase the selected determinants of monocyte/ macrophage activity, which were diminished in response to gastric pathogen Helicobacter pylori, Scientific Reports, Nature Publishing Group, vol. 13, 2023, Numer artykułu: 3107, s. 1-14, DOI:10.1038/s41598-023-30250-6 | pl_PL |
dc.identifier.issn | 2045-2322 | |
dc.identifier.uri | http://hdl.handle.net/11089/46983 | |
dc.description.abstract | High antibiotic resistance of gastric pathogen Helicobacter pylori (Hp) and the ability to escape the host immune response prompt searching for therapeutic immunomodulators. Bacillus Calmette–Guerin (BCG) vaccine with Mycobacterium bovis (Mb) is a candidate for modulation the activity of immunocompetent cells, and onco-BCG formulation was successfully used in immunotherapy of bladder cancer. We determined the influence of onco-BCG on the phagocytic capacity of human THP-1 monocyte/macrophage cells, using the model of Escherichia coli bioparticles and Hp fluorescently labeled. Deposition of cell integrins CD11b, CD11d, CD18, membrane/soluble lipopolysaccharide (LPS) receptors, CD14 and sCD14, respectively, and the production of macrophage chemotactic protein (MCP)-1 were determined. Furthermore, a global DNA methylation, was also assessed. Human THP-1 monocytes/macrophages (TIB 202) primed or primed and restimulated with onco-BCG or Hp, were used for assessment of phagocytosis towards E. coli or Hp, surface (immunostaining) or soluble activity determinants, and global DNA methylation (ELISA). THP-1 monocytes/macrophages primed/restimulated with BCG showed increased phagocytosis capacity towards E. coli fluorescent particles, elevated expression of CD11b, CD11d, CD18, CD14, sCD14, increased MCP-1 secretion and DNA methylation. Preliminary results indicate that BCG mycobacteria may also induce the phagocytosis of H. pylori by THP-1 monocytes. Priming or priming and restimulation of monocytes/macrophages with BCG resulted in an increased activity of these cells, which was negatively modulated by Hp. | pl_PL |
dc.description.sponsorship | This research was financially supported by University of Lodz, Grant Number 15/GNZPA/2022
(B2111001000027.07). Development of chitozan biopolimer with Mycobacterium bovis BCG-onko vaccine
mycobacteria, with immunomodulatory properties, to improve immune response towards Helicobacter pylori
and Student Research Grants financed by University of Lodz. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Nature Portfolio | pl_PL |
dc.relation.ispartofseries | Scientific Reports;3107 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Monocytes and macrophages | pl_PL |
dc.subject | Bacterial host response | pl_PL |
dc.title | Mycobacterium bovis BCG increase the selected determinants of monocyte/macrophage activity, which were diminished in response to gastric pathogen Helicobacter pylori | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-14 | pl_PL |
dc.contributor.authorAffiliation | Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90‑237 Lodz, Poland. | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland. | pl_PL |
dc.contributor.authorAffiliation | Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland. | pl_PL |
dc.references | Warren, J. R. & Marshall, B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 1273–1275 (1983). | pl_PL |
dc.references | Rudnicka, K., Backert, S. & Chmiela, M. Genetic polymorphisms in inflammatory and other regulators in gastric cancer: Risks and clinical consequences. Curr. Top. Microbiol. Immunol. 421, 53–76. https:// doi. org/ 10. 1007/ 978-3- 030- 15138-6_3 (2019). | pl_PL |
dc.references | Chmiela, M. & Kupcinskas, J. Pathogenesis of Helicobacter pylori infection. Helicobacter 24, e12638. https:// doi. org/ 10. 1111/ hel. 12638 (2019). | pl_PL |
dc.references | Papagiannakis, P. et al. The role of Helicobacter pylori infection in hematological disorders. Eur. J. Intern. Med. 24, 685–690. https:// doi. org/ 10. 1016/j. ejim. 2013. 02. 011 (2013). | pl_PL |
dc.references | Park, J. S. et al. Gastric autoantigenic proteins in Helicobacter pylori infection. Yonsei Med. J. 54, 1342–1352. https:// doi. org/ 10. 3349/ ymj. 2013. 54.6. 1342 (2013). | pl_PL |
dc.references | Gonciarz, W. et al. Autoantibodies to a specific peptide epitope of human Hsp60 (ATVLA) with homology to Helicobacter pylori HspB in H. pylori-infected patients. APMIS 127, 139–149. https:// doi. org/ 10. 1111/ apm. 1292 (2019). | pl_PL |
dc.references | Gonciarz, W. et al. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS ONE 14, e0220636. https:// doi. org/ 10. 1371/ journ al. pone. 02206 36 (2019). | pl_PL |
dc.references | Mnich, E. et al. Impact of Helicobacter pylori on the healing process of the gastric barrier. World J. Gastroenterol. 22, 7536–7558. https:// doi. org/ 10. 3748/ wjg. v22. i33. 7536 (2016). | pl_PL |
dc.references | Li, B. et al. Proton-pump inhibitor and amoxicillin-based triple therapy containing clarithromycin versus metronidazole for Helicobacter pylori: A meta-analysis. Microb. Pathog. 142, 104075. https:// doi. org/ 10. 1016/j. micpa th. 2020. 104075 (2020). | pl_PL |
dc.references | Savoldi, A., Carrara, E., Graham, D. Y. & Tacconelli, C. E. Prevalence of antibiotic resistance in Helicobacter pylori: A systematic review and meta-analysis in World Health Organization regions. Gastroenterology 155, 1372–1382. https:// doi. org/ 10. 1053/j. gastro. 2018. 07. 007 (2018). | pl_PL |
dc.references | Cui, R. et al. Correlation analysis among genotype resistance, phenotype resistance and eradication effect of Helicobacter pylori. Infect. Drug Resist. 14, 1747–1756. https:// doi. org/ 10. 2147/ IDR. S3059 96 (2021). | pl_PL |
dc.references | Bujanda, L. et al. Antibiotic resistance prevalence and trends in patients infected with Helicobacter pylori in the period 2013–2020: Results of the European Registry on H. pylori Management (Hp-EuReg). Antibiotics (Basel) 10, 1058. https:// doi. org/ 10. 3390/ antib iotic s1009 1058 (2021). | pl_PL |
dc.references | Chmiela, M., Czkwianianc, E., Wadstrom, T. & Rudnicka, W. Role of Helicobacter pylori surface structures in bacterial interaction with macrophages. Gut 40, 20–24 (1997). | pl_PL |
dc.references | Ramarao, N. & Meyer, T. F. Helicobacter pylori resists phagocytosis by macrophages: Quantitative assessment by confocal microscopy and fluorescence-activated cell sorting. Infect. Immun. 69, 2604–2611. https:// doi. org/ 10. 1128/ IAI. 69.4. 2604- 2611. 2001 (2001). | pl_PL |
dc.references | Allen, L. A. Phagocytosis and persistence of Helicobacter pylori. Cell Microbiol. 9, 817–828. https:// doi. org/ 10. 1111/j. 1462- 5822. 2007. 00906.X (2007). | pl_PL |
dc.references | Grębowska, A. et al. Anti-phagocitic activity of Helicobacter pylori lipopolysaccharide (LPS)—Possible modulation of the innate immune response to these bacteria. Pol. J. Microbiol. 57, 185–192 (2008). | pl_PL |
dc.references | Rudnicka, K. et al. Helicobacter pylori-driven modulation of NK cell expansion, intracellular cytokine expression and cytotoxic activity. Innate Immun. 21, 127–139. https:// doi. org/ 10. 1177/ 17534 25913 518225 (2015). | pl_PL |
dc.references | Paziak-Domańsk, B., Chmiela, M., Jarosińska, A. & Rudnicka, W. Potential role of CagA in the inhibition of T cell reactivity in Helicobacter pylori infections. Cell Immunol. 202, 136–139 (2002). | pl_PL |
dc.references | Matusiak, A. et al. Putative consequences of exposure to Helicobacter pylori infection in patients with coronary heart disease in terms of humoral immune response and inflammation. Arch. Med. Sci. 12, 45–54. https:// doi. org/ 10. 5114/ aoms. 2015. 50772 (2016). | pl_PL |
dc.references | Miszczyk, E. et al. Antigen-specific lymphocyte proliferation as a marker of immune response in guinea pigs with sustained Helicobacter pylori infection. Acta Bioch. Pol. 62, 295–303 (2014). | pl_PL |
dc.references | Saroj, P., Verma, M. & Jha, K. K. An overview on immunomodulation. J. Adv. Sci. Res. 3, 1–12 (2012). | pl_PL |
dc.references | Netea, M. G. et al. Trained immunity: A program of innate immune memory in health and disease. Science 352, aaf1098. https:// doi. org/ 10. 1126/ scien ce. aaf10 98 (2016). | pl_PL |
dc.references | Sohrabi, Y. et al. Trained immunity as a novel approach against COVID-19 with a focus on Bacillus Calmette–Guérin vaccine: Mechanisms, challenges and perspectives. Clin. Transl. Immunol. 9, e1228. https:// doi. org/ 10. 1002/ cti2. 1228 (2020). | pl_PL |
dc.references | Teunissen, A. J. P. et al. Targeting trained innate immunity with nanobiologics to treat cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 41, 1839–1850. https:// doi. org/ 10. 1161/ ATVBA HA. 120. 315448 (2021). | pl_PL |
dc.references | Rusek, P., Wala, M., Druszczyńska, M. & Fol, M. Infectious agents as stimuli of trained innate immunity. Int. J. Mol. Sci. 19, 456. https:// doi. org/ 10. 3390/ ijms1 90204 56 (2018). | pl_PL |
dc.references | van der Heijden, C. D. C. C. et al. Epigenetics and trained immunity. Antioxid. Redox Signal. 10(29), 1023–1040. https:// doi. org/ 10. 1089/ ars. 2017. 7310 (2018). | pl_PL |
dc.references | Masihi, K. N. Fighting infection using immunomodulatory agents. Expert Opin. Biol. Ther. 1, 641–653. https:// doi. org/ 10. 1517/ 14712 598.1. 4. 641 (2001). | pl_PL |
dc.references | Yamazaki-Nakashimada, M. A. et al. BCG: A vaccine with multiple faces. Hum. Vaccin. Immunother. 16, 1841–1850. https:// doi. org/ 10. 1080/ 21645 515. 2019. 17069 30 (2020). | pl_PL |
dc.references | Freyne, B., Marchant, A. & Curtis, N. BCG-associated heterologous immunity, a historical perspective: Intervention studies in animal models of infectious diseases. Trans. R. Soc. Trop. Med. Hyg. 109, 52–61. https:// doi. org/ 10. 1093/ trstmh/ tru197 (2015). | pl_PL |
dc.references | Aaby, P. et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period?. J. Infect. Dis. 15(204), 245–252. https:// doi. org/ 10. 1093/ infdis/ jir240 (2011). | pl_PL |
dc.references | Wardhana, D. et al. The efficacy of Bacillus Calmette–Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly. Acta Med. Indones. 43, 185–190 (2011). | pl_PL |
dc.references | Hana, J., Gua, X., Lia, Y. & Wu, Q. Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed. Pharmacother. 129, 110393. https:// doi. org/ 10. 1016/j. biopha. 2020. 110393 (2020). | pl_PL |
dc.references | Gonciarz, W., Krupa, A. & Chmiela, M. Proregenerative cctivity of IL-33 in gastric tissue cells undergoing Helicobacter pyloriinduced apoptosis. Int. J. Mol. Sci. 21, 1801. https:// doi. org/ 10. 3390/ ijms2 10518 01 (2020). | pl_PL |
dc.references | Ernst, J. D. Macrophage receptors for Mycobacterium tuberculosis. Infect. Immun. 66, 1277–1281 (1998). | pl_PL |
dc.references | Vinod, V., Vijayrajratnam, S., Vasudevan, A. K. & Biswas, R. The cell surface adhesins of Mycobacterium tuberculosis. Microbiol. Res. 232, 126392. https:// doi. org/ 10. 1016/j. micres. 2019. 126392 (2020). | pl_PL |
dc.references | Gonciarz, W., Chyb, M. & Chmiela, M. Modulation of the Helicobacter pylori interaction with host cells through Mycobacterium bovis onko-BCG vaccine on in vitro and in vivo models. Microb. Health Dis. 4, e735. https:// doi. org/ 10. 26355/ mhd_ 20229_ 735 (2022). | pl_PL |
dc.references | Squeglia, F., Ruggiero, A., De Simone, A. & Berisio, R. A structural overview of mycobacterial adhesins: Key biomarkers for diagnostics and therapeutics. Protein Sci. 27, 369–380. https:// doi. org/ 10. 1002/ pro. 3346 (2017). | pl_PL |
dc.references | Diaz-Silvestre, H. et al. The 19 kD antigen of Mycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1 monocytic cells and promotes phagocytosis of mycobacteria. Microb. Pathog. 39, 97–107. https:// doi. org/ 10. 1016/j. micpa th. 2005. 06. 002 (2005). | pl_PL |
dc.references | Sun, H., Zhi, K., Hu, L. & Fan, Z. The activation and regulation of Beta2 integrins in phagocytes and phagocytosis. Front. Immunol. 12, 633639. https:// doi. org/ 10. 3389/ fimmu. 2021. 633639 (2021). | pl_PL |
dc.references | Vandendriessche, S., Cambier, S., Proost, P. & Marques, P. E. Complement receptors and their role in leukocyte recruitment and phagocytosis. Front. Immunol. 10, 2318. https:// doi. org/ 10. 3389/ fimmu. 2021. 62402 (2021). | pl_PL |
dc.references | Yao, X. et al. Leukadherin-1-mediated activation of CD11b inhibits LPS-induced pro-inflammatory response in macrophages and protects mice against endotoxic shock by blocking LPS-TLR4 interaction. Front. Immunol. 10, 215. https:// doi. org/ 10. 3389/ fimmu. 2019. 00215 (2019). | pl_PL |
dc.references | Abdelbaqi, M. et al. Regulation of dextran sodium sulfate induced colitis by leukocyte beta 2 integrins. Lab. Investig. 86, 380–390. https:// doi. org/ 10. 1038/ labin vest. 37003 98 (2006). | pl_PL |
dc.references | Ehirchiou, D. et al. CD11b facilitates the development of peripheral tolerance by suppressing Th17 differentiation. J. Exp. Med. 204, 1519–1524. https:// doi. org/ 10. 1084/ jem. 20062 292 (2007). | pl_PL |
dc.references | Ganguly, N. et al. Mycobacterium tuberculosis secretory proteins CFP-10, ESAT-6 and the CFP10:ESAT6 complex inhibit lipopolysaccharide induced NF-kappa B transactivation by downregulation of reactive oxygen species (ROS) production. Immunol. Cell Biol. 86, 98–106. https:// doi. org/ 10. 1038/ sj. icb. 71001 17 (2008). | pl_PL |
dc.references | Feng, X. et al. Lipopolysaccharide inhibits macrophage phagocytosis of apoptotic neutrophils by regulating the production of tumour necrosis factor α and growth arrest-specific gene 6. Immunology 132, 287–295. https:// doi. org/ 10. 1111/j. 1365- 2567. 2010. 03364.x (2011). | pl_PL |
dc.references | Walencka, M. et al. The microbiological, histological, immunological and molecular determinants of Helicobacter pylori infection in guinea pigs as a convenient animal model to study pathogenicity of these bacteria and the infection dependent immune response of the host. Acta Bioch. Pol. 62, 697–706. https:// doi. org/ 10. 18388/ abp. 2015_ 1110 (2015). | pl_PL |
dc.references | Ciesielska, A., Matyjek, M. & Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol. Life Sci. 78, 1233–1261. https:// doi. org/ 10. 1007/ s00018- 020- 03656-y (2021). | pl_PL |
dc.references | Deng, M. et al. Lipopolysaccharide clearance, bacterial clearance, and systemic inflammatory responses are regulated by cell typespecific functions of TLR4 during sepsis. J. Immunol. 15(190), 5152–5160. https:// doi. org/ 10. 4049/ jimmu nol. 13004 96 (2013). | pl_PL |
dc.references | Zhang, M. et al. Toll-like receptor 4 is essential to preserving cardiac function and survival in low-grade polymicrobial sepsis. Anesthesiology 121, 1270–1280. https:// doi. org/ 10. 1097/ ALN. 00000 00000 000337 (2014). | pl_PL |
dc.references | Poltorak, A. et al. Deffective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282, 2085–2088 (1998). | pl_PL |
dc.references | Moran, A. P. et al. Phenotypic variation in molecular mimicry between Helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. Acid-induced phase variation in Lewis(x) and Lewis(y) expression by H. pylori lipopolysaccharides. J. Biol. Chem. 22(277), 5785–5795. https:// doi. org/ 10. 1074/ jbc. M1085 74200 (2002). | pl_PL |
dc.references | Grębowska, A. et al. H. pylori lipopolysaccharide activity in human peripheral blood mononuclear leukocytes cultures. J. Physiol. Pharmacol. 61, 437–442 (2010). | pl_PL |
dc.references | Keating, S. T. & El-Osta, A. Epigenetics and metabolism. Circ. Res. 116, 715–736. https:// doi. org/ 10. 1161/ CIRCR ESAHA. 116. 303936 (2015). | pl_PL |
dc.references | Yang, Y. et al. PSTPIP2 connects DNA methylation to macrophage polarization in CCL4-induced mouse model of hepatic fibrosis. Oncogene 37, 6119–6135. https:// doi. org/ 10. 1038/ s41388- 018- 0383-0 (2018). | pl_PL |
dc.references | Ji, J. et al. Methionine attenuates lipopolysaccharide-induced inflammatory responses via DNA methylation in macrophages. ACS Omega 4, 2331–2336. https:// doi. org/ 10. 1021/ acsom ega. 8b0357 (2019). | pl_PL |
dc.references | Natoli, G. & Ostuni, R. Adaptation and memory in immune responses. Nat. Immunol. 20, 783–792. https:// doi. org/ 10. 1038/ s41590- 019- 0399-9 (2019). | pl_PL |
dc.references | Bekkering, S. et al. In vitro experimental model of trained innate immunity in human primary monocytes. Clin. Vaccine Immunol. 23, 926–933. https:// doi. org/ 10. 1128/ CVI. 00349- 16 (2016). | pl_PL |
dc.references | Brzeziński, M. et al. Nanocarriers based on block copolymers of l-proline and lactide: The effect of core crosslinking versus its pH-sensitivity on their cellular uptake. Eur. Polym. J. 156, 110572. https:// doi. org/ 10. 1016/j. eurpo lymj. 2021. 110572 (2021). | pl_PL |
dc.identifier.doi | 10.1038/s41598-023-30250-6 | |
dc.relation.volume | 13 | pl_PL |
dc.discipline | nauki biologiczne | pl_PL |