dc.contributor.author | Hikisz, Pawel | |
dc.contributor.author | Jacenik, Damian | |
dc.date.accessioned | 2023-05-10T14:17:10Z | |
dc.date.available | 2023-05-10T14:17:10Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Hikisz Paweł, Jacenik Damian: Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases, International Journal of Molecular Sciences, Multidisciplinary Digital Publishing Institute (MDPI), vol. 24, nr 7, 2023, Numer artykułu: 6579, s. 1-23, DOI:10.3390/ijms24076579 | pl_PL |
dc.identifier.issn | 1422-0067 | |
dc.identifier.uri | http://hdl.handle.net/11089/47042 | |
dc.description.abstract | Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | International Journal of Molecular Sciences;24(7), 6579 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | acrolein | pl_PL |
dc.subject | diabetes | pl_PL |
dc.subject | diet | pl_PL |
dc.subject | diabetic retinopathy | pl_PL |
dc.subject | diabetic nephropathy | pl_PL |
dc.subject | alcoholic liver disease | pl_PL |
dc.subject | colorectal cancer | pl_PL |
dc.subject | oxidative stress | pl_PL |
dc.subject | DNA adducts | pl_PL |
dc.subject | α,β-unsaturated aldehydes | pl_PL |
dc.title | Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-23 | pl_PL |
dc.contributor.authorAffiliation | Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland | pl_PL |
dc.references | Burcham, P.C. Acrolein and Human Disease: Untangling the Knotty Exposure Scenarios Accompanying Several Diverse Disorders. Chem. Res. Toxicol. 2017, 30, 145–161. https://doi.org/10.1021/acs.chemrestox.6b00310. | pl_PL |
dc.references | Moghe, A.; Ghare, S.; Lamoreau, B.; Mohammad, M.; Barve, S.; McClain, C.; Joshi-Barve, S. Molecular mechanisms of acrolein toxicity: Relevance to human disease. Toxicol. Sci. 2015, 143, 242–255. https://doi.org/10.1093/toxsci/kfu233. | pl_PL |
dc.references | Stevens, J.F.; Maier, C.S. Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol. Nutr. Food Res. 2008, 52, 7–25. https://doi.org/10.1002/mnfr.200700412. | pl_PL |
dc.references | Muguruma, K.; Pradipta, A.R.; Ode, Y.; Terashima, K.; Michiba, H.; Fujii, M.; Tanaka, K. Disease-associated acrolein: A possible diagnostic and therapeutic substrate for in vivo synthetic chemistry. Bioorg. Med. Chem. 2020, 28, 115831. https://doi.org/10.1016/j.bmc.2020.115831. | pl_PL |
dc.references | Yasuo, M.; Droma, Y.; Kitaguchi, Y.; Ito, M.; Imamura, H.; Kawakubo, M.; Hanaoka, M. The relationship between acrolein and oxidative stress in COPD: In systemic plasma and in local lung tissue. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 1527–1537. https://doi.org/10.2147/COPD.S208633. | pl_PL |
dc.references | Hong, J.; Song, Y.; Xie, J.; Xie, J.; Chen, Y.; Li, P.; Liu, D.; Hu, X.; Yu, Q. Acrolein Promotes Aging and Oxidative Stress via the Stress Response Factor DAF-16/FOXO in Caenorhabditis elegans. Foods 2022, 11, 1590. https://doi.org/10.3390/foods11111590. | pl_PL |
dc.references | Noerager, B.D.; Xu, X.; Davis, V.A.; Jones, C.W.; Okafor, S.; Whitehead, A.; Blalock, J.E.; Jackson, P.L. A Potential Role for Acrolein in Neutrophil-Mediated Chronic Inflammation. Inflammation 2015, 38, 2279–2287. https://doi.org/10.1007/s10753-015-0213- 2. | pl_PL |
dc.references | Sun, Y.; Ito, S.; Nishio, N.; Tanaka, Y.; Chen, N.; Isobe, K.-I. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells. Toxicol. Lett. 2014, 229, 384–392. https://doi.org/10.1016/j.toxlet.2014.06.021. | pl_PL |
dc.references | Tsai, H.-C.; Tsou, H.-H.; Lin, C.-C.; Chen, S.-C.; Cheng, H.-W.; Liu, T.-Y.; Chen, W.-S.; Jiang, J.-K.; Yang, S.-H.; Chang, S.-C.; et al. Acrolein contributes to human colorectal tumorigenesis through the activation of RAS-MAPK pathway. Sci. Rep. 2021, 11, 12590. https://doi.org/10.1038/s41598-021-92035-z. | pl_PL |
dc.references | Moretto, N.; Bertolini, S.; Iadicicco, C.; Marchini, G.; Kaur, M.; Volpi, G.; Patacchini, R.; Singh, D.; Facchinetti, F. Cigarette smoke and its component acrolein augment IL-8/CXCL8 mRNA stability via p38 MAPK/MK2 signaling in human pulmonary cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 303, L929–L938. https://doi.org/10.1152/ajplung.00046.2012. | pl_PL |
dc.references | Paiano, V.; Maertens, L.; Guidolin, V.; Yang, J.; Balbo, S.; Hecht, S.S. Quantitative Liquid Chromatography-Nanoelectrospray Ionization-High-Resolution Tandem Mass Spectrometry Analysis of Acrolein-DNA Adducts and Etheno-DNA Adducts in Oral Cells from Cigarette Smokers and Nonsmokers. Chem. Res. Toxicol. 2020, 33, 2197–2207. https://doi.org/10.1021/acs.chemrestox.0c00223. | pl_PL |
dc.references | Chen, H.-J.C. Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example. Chem. Res. Toxicol. 2023, 36, 132–140. https://doi.org/10.1021/acs.chemrestox.2c00354. | pl_PL |
dc.references | Wang, H.-T.; Hu, Y.; Tong, D.; Huang, J.; Gu, L.; Wu, X.-R.; Chung, F.-L.; Li, G.-M.; Tang, M. Effect of Carcinogenic Acrolein on DNA Repair and Mutagenic Susceptibility. J. Biol. Chem. 2012, 287, 12379–12386. https://doi.org/10.1074/jbc.M111.329623. | pl_PL |
dc.references | Kashiwagi, K.; Igarashi, K. Molecular Characteristics of Toxicity of Acrolein Produced from Spermine. Biomolecules 2023, 13, 298. https://doi.org/10.3390/biom13020298. | pl_PL |
dc.references | Jiang, K.; Huang, C.; Liu, F.; Zheng, J.; Ou, J.; Zhao, D.; Ou, S. Origin and Fate of Acrolein in Foods. Foods 2022, 11, 1976. https://doi.org/10.3390/foods11131976. | pl_PL |
dc.references | Lorkiewicz, P.; Keith, R.; Lynch, J.; Jin, L.; Theis, W.; Krivokhizhina, T.; Riggs, D.; Bhatnagar, A.; Srivastava, S.; Conklin, D.J. Electronic Cigarette Solvents, JUUL E-Liquids, and Biomarkers of Exposure: In Vivo Evidence for Acrolein and Glycidol in ECig- Derived Aerosols. Chem. Res. Toxicol. 2022, 35, 283–292. https://doi.org/10.1021/acs.chemrestox.1c00328. | pl_PL |
dc.references | Znyk, M.; Jurewicz, J.; Kaleta, D. Exposure to Heated Tobacco Products and Adverse Health Effects, a Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 6651. https://doi.org/10.3390/ijerph18126651. | pl_PL |
dc.references | Ding, Y.S.; Richter, P.; Hearn, B.; Zhang, L.; Bravo, R.; Yan, X.; Perez, J.J.; Chan, M.; Hughes, J.; Chen, P.; et al. Chemical Characterization of Mainstream Smoke from SPECTRUM Variable Nicotine Research Cigarettes. Tob. Regul. Sci. 2017, 3, 81–94. https://doi.org/10.18001/trs.3.1.8. | pl_PL |
dc.references | Chen, M.; Carmella, S.G.; Lindgren, B.R.; Luo, X.; Ikuemonisan, J.; Niesen, B.; Thomson, N.M.; Murphy, S.E.; Hatsukami, D.K.; Hecht, S.S. Increased Levels of the Acrolein Metabolite 3-Hydroxypropyl Mercapturic Acid in the Urine of e-Cigarette Users. Chem. Res. Toxicol. 2022. https://doi.org/10.1021/acs.chemrestox.2c00145. | pl_PL |
dc.references | Cheng, G.; Guo, J.; Carmella, S.G.; Lindgren, B.; Ikuemonisan, J.; Niesen, B.; Jensen, J.; Hatsukami, D.K.; Balbo, S.; Hecht, S.S. Increased acrolein-DNA adducts in buccal brushings of e-cigarette users. Carcinogenesis 2022, 43, 437–444. https://doi.org/10.1093/carcin/bgac026. | pl_PL |
dc.references | Alvarenga, G.F.; Resende Machado, A.M. de; Barbosa, R.B.; Ferreira, V.R.F.; Santiago, W.D.; Teixeira, M.L.; Nelson, D.L.; Cardoso, M.D.G. Correlation of the presence of acrolein with higher alcohols, glycerol, and acidity in cachaças. J. Food Sci. 2023, early view. https://doi.org/10.1111/1750-3841.16523. | pl_PL |
dc.references | Uemura, T.; Uchida, M.; Nakamura, M.; Shimekake, M.; Sakamoto, A.; Terui, Y.; Higashi, K.; Ishii, I.; Kashiwagi, K.; Igarashi, K. A search for acrolein scavengers among food components. Amino Acids 2023, 1-10. https://doi.org/10.1007/s00726-023-03248- 7. | pl_PL |
dc.references | Abraham, K.; Andres, S.; Palavinskas, R.; Berg, K.; Appel, K.E.; Lampen, A. Toxicology and risk assessment of acrolein in food. Mol. Nutr. Food Res. 2011, 55, 1277–1290. https://doi.org/10.1002/mnfr.201100481. | pl_PL |
dc.references | Aizenbud, D.; Aizenbud, I.; Reznick, A.Z.; Avezov, K. Acrolein-an α,β-Unsaturated Aldehyde: A Review of Oral Cavity Exposure and Oral Pathology Effects. Rambam Maimonides Med. J. 2016, 7, e0024. https://doi.org/10.5041/RMMJ.10251. | pl_PL |
dc.references | Ewert, A.; Granvogl, M.; Schieberle, P. Development of two stable isotope dilution assays for the quantitation of acrolein in heat-processed fats. J. Agric. Food Chem. 2011, 59, 3582–3589. https://doi.org/10.1021/jf200467x. | pl_PL |
dc.references | Ewert, A.; Granvogl, M.; Schieberle, P. Isotope-labeling studies on the formation pathway of acrolein during heat processing of oils. J. Agric. Food Chem. 2014, 62, 8524–8529. https://doi.org/10.1021/jf501527u. | pl_PL |
dc.references | Bachir, N.; Haddarah, A.; Sepulcre, F.; Pujola, M. Formation, Mitigation, and Detection of Acrylamide in Foods. Food Anal. Methods 2022, 15, 1736–1747. https://doi.org/10.1007/s12161-022-02239-w. | pl_PL |
dc.references | Ho, S.S.H.; Yu, J.Z.; Chu, K.W.; Yeung, L.L. Carbonyl emissions from commercial cooking sources in Hong Kong. J. Air Waste Manag. Assoc. 2006, 56, 1091–1098. https://doi.org/10.1080/10473289.2006.10464532. | pl_PL |
dc.references | Seaman, V.Y.; Bennett, D.H.; Cahill, T.M. Indoor acrolein emission and decay rates resulting from domestic cooking events. Atmos. Environ. 2009, 43, 6199–6204. https://doi.org/10.1016/j.atmosenv.2009.08.043. | pl_PL |
dc.references | Hecht, S.S.; Koh, W.-P.; Wang, R.; Chen, M.; Carmella, S.G.; Murphy, S.E.; Yuan, J.-M. Elevated levels of mercapturic acids of acrolein and crotonaldehyde in the urine of Chinese women in Singapore who regularly cook at home. PLoS ONE 2015, 10, e0120023. https://doi.org/10.1371/journal.pone.0120023. | pl_PL |
dc.references | Yu, I.T.S.; Chiu, Y.-L.; Au, J.S.K.; Wong, T.-W.; Tang, J.-L. Dose-response relationship between cooking fumes exposures and lung cancer among Chinese nonsmoking women. Cancer Res. 2006, 66, 4961–4967. https://doi.org/10.1158/0008-5472.CAN-05- 2932. | pl_PL |
dc.references | Gao, Y.T.; Blot, W.J.; Zheng, W.; Ershow, A.G.; Hsu, C.W.; Levin, L.I.; Zhang, R.; Fraumeni, J.F. Lung cancer among Chinese women. Int. J. Cancer 1987, 40, 604–609. https://doi.org/10.1002/ijc.2910400505. | pl_PL |
dc.references | Hecht, S.S.; Seow, A.; Wang, M.; Wang, R.; Meng, L.; Koh, W.-P.; Carmella, S.G.; Chen, M.; Han, S.; Yu, M.C.; et al. Elevated levels of volatile organic carcinogen and toxicant biomarkers in Chinese women who regularly cook at home. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1185–1192. https://doi.org/10.1158/1055-9965.EPI-09-1291. | pl_PL |
dc.references | Wang, T.-W.; Liu, J.-H.; Tsou, H.-H.; Liu, T.-Y.; Wang, H.-T. Identification of acrolein metabolites in human buccal cells, blood, and urine after consumption of commercial fried food. Food Sci. Nutr. 2019, 7, 1668–1676. https://doi.org/10.1002/fsn3.1001. | pl_PL |
dc.references | Byrne, G.A.; Gardiner, D.; Holmes, F.H. The pyrolysis of cellulose and the action of flame-retardants. J. Appl. Chem. 1966, 16, 81–88. https://doi.org/10.1002/jctb.5010160303. | pl_PL |
dc.references | Paine, J.B.; Pithawalla, Y.B.; Naworal, J.D. Carbohydrate pyrolysis mechanisms from isotopic labeling. J. Anal. Appl. Pyrolysis 2008, 82, 42–69. https://doi.org/10.1016/j.jaap.2007.12.005. | pl_PL |
dc.references | Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Acrylamide is formed in the Maillard reaction. Nature 2002, 419, 448–449. https://doi.org/10.1038/419448a. | pl_PL |
dc.references | Quan, W.; Li, Y.; Jiao, Y.; Xue, C.; Liu, G.; Wang, Z.; He, Z.; Qin, F.; Zeng, M.; Chen, J. Simultaneous generation of acrylamide, β-carboline heterocyclic amines and advanced glycation ends products in an aqueous Maillard reaction model system. Food Chem. 2020, 332, 127387. https://doi.org/10.1016/j.foodchem.2020.127387. | pl_PL |
dc.references | Pfeifer, Y.V.; Kroh, L.W. Investigation of reactive alpha-dicarbonyl compounds generated from the Maillard reactions of Lmethionine with reducing sugars via their stable quinoxaline derivatives. J. Agric. Food Chem. 2010, 58, 8293–8299. https://doi.org/10.1021/jf1008988. | pl_PL |
dc.references | Roemer, E.; Schorp, M.K.; Piadé, J.-J.; Seeman, J.I.; Leyden, D.E.; Haussmann, H.-J. Scientific assessment of the use of sugars as cigarette tobacco ingredients: A review of published and other publicly available studies. Crit. Rev. Toxicol. 2012, 42, 244–278. https://doi.org/10.3109/10408444.2011.650789. | pl_PL |
dc.references | Pennings, J.L.A.; Cremers, J.W.J.M.; Becker, M.J.A.; Klerx, W.N.M.; Talhout, R. Aldehyde and Volatile Organic Compound Yields in Commercial Cigarette Mainstream Smoke Are Mutually Related and Depend on the Sugar and Humectant Content in Tobacco. Nicotine Tob. Res. 2020, 22, 1748–1756. https://doi.org/10.1093/ntr/ntz203. | pl_PL |
dc.references | Fagan, P.; Pokhrel, P.; Herzog, T.A.; Moolchan, E.T.; Cassel, K.D.; Franke, A.A.; Li, X.; Pagano, I.; Trinidad, D.R.; Sakuma, K.- L.K.; et al. Sugar and Aldehyde Content in Flavored Electronic Cigarette Liquids. Nicotine Tob. Res. 2018, 20, 985–992. https://doi.org/10.1093/ntr/ntx234. | pl_PL |
dc.references | Conklin, D.J.; Ogunwale, M.A.; Chen, Y.; Theis, W.S.; Nantz, M.H.; Fu, X.-A.; Chen, L.-C.; Riggs, D.W.; Lorkiewicz, P.; Bhatnagar, A.; et al. Electronic cigarette-generated aldehydes: The contribution of e-liquid components to their formation and the use of urinary aldehyde metabolites as biomarkers of exposure. Aerosol Sci. Technol. 2018, 52, 1219–1232. https://doi.org/10.1080/02786826.2018.1500013. | pl_PL |
dc.references | Li, Y.; Burns, A.E.; Tran, L.N.; Abellar, K.A.; Poindexter, M.; Li, X.; Madl, A.K.; Pinkerton, K.E.; Nguyen, T.B. Impact of e-Liquid Composition, Coil Temperature, and Puff Topography on the Aerosol Chemistry of Electronic Cigarettes. Chem. Res. Toxicol. 2021, 34, 1640–1654. https://doi.org/10.1021/acs.chemrestox.1c00070. | pl_PL |
dc.references | Vreeke, S.; Korzun, T.; Luo, W.; Jensen, R.P.; Peyton, D.H.; Strongin, R.M. Dihydroxyacetone levels in electronic cigarettes: Wick temperature and toxin formation. Aerosol Sci. Technol. 2018, 52, 370–376. https://doi.org/10.1080/02786826.2018.1424316. | pl_PL |
dc.references | Samburova, V.; Bhattarai, C.; Strickland, M.; Darrow, L.; Angermann, J.; Son, Y.; Khlystov, A. Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study Results. Toxics 2018, 6, 46. https://doi.org/10.3390/toxics6030046. | pl_PL |
dc.references | Luo, Y.; Kong, L.; Xue, R.; Wang, W.; Xia, X. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends Food Sci. Technol. 2020, 96, 222–232. https://doi.org/10.1016/j.tifs.2019.12.026. | pl_PL |
dc.references | Sung, H. A natural compound (reuterin) produced by Lactobacillus reuteri for biological-tissue fixation. Biomaterials 2003, 24, 1335–1347. https://doi.org/10.1016/S0142-9612(02)00509-4. | pl_PL |
dc.references | SERJAK, W.C.; DAY, W.H.; van LANEN, J.M.; BORUFF, C.S. Acrolein Production by Bacteria Found in Distillery Grain Mashes. Appl. Microbiol. 1954, 2, 14–20. https://doi.org/10.1128/am.2.1.14-20.1954. | pl_PL |
dc.references | Smiley, K.L.; Sobolov, M. A cobamide-requiring glycerol dehydrase from an acrolein-forming lactobacillus. Arch. Biochem. Biophys. 1962, 97, 538–543. https://doi.org/10.1016/0003-9861(62)90118-2. | pl_PL |
dc.references | Cespi, D.; Passarini, F.; Mastragostino, G.; Vassura, I.; Larocca, S.; Iaconi, A.; Chieregato, A.; Dubois, J.-L.; Cavani, F. Glycerol as feedstock in the synthesis of chemicals: A life cycle analysis for acrolein production. Green Chem. 2015, 17, 343–355. https://doi.org/10.1039/C4GC01497A. | pl_PL |
dc.references | Choe, E.; Min, D.B. Chemistry of deep-fat frying oils. J. Food Sci. 2007, 72, R77–R86. https://doi.org/10.1111/j.1750- 3841.2007.00352.x. | pl_PL |
dc.references | Spiteller, G. Peroxyl radicals: Inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Radic. Biol. Med. 2006, 41, 362–387. https://doi.org/10.1016/j.freeradbiomed.2006.03.013. | pl_PL |
dc.references | Spiteller, P.; Kern, W.; Reiner, J.; Spiteller, G. Aldehydic lipid peroxidation products derived from linoleic acid. Biochim. Biophys. Acta 2001, 1531, 188–208. https://doi.org/10.1016/s1388-1981(01)00100-7. | pl_PL |
dc.references | Umano, K.; Shibamoto, T. Analysis of acrolein from heated cooking oils and beef fat. J. Agric. Food Chem. 1987, 35, 909–912. https://doi.org/10.1021/jf00078a014. | pl_PL |
dc.references | Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991, 11, 81–128. https://doi.org/10.1016/0891-5849(91)90192-6. | pl_PL |
dc.references | Yin, H.; Porter, N.A. New insights regarding the autoxidation of polyunsaturated fatty acids. Antioxid. Redox Signal. 2005, 7, 170–184. https://doi.org/10.1089/ars.2005.7.170. | pl_PL |
dc.references | Endo, Y.; Hayashi, C.; Yamanaka, T.; Takayose, K.; Yamaoka, M.; Tsuno, T.; Nakajima, S. Linolenic Acid as the Main Source of Acrolein Formed During Heating of Vegetable Oils. J. Am. Oil. Chem. Soc. 2013, 90, 959–964. https://doi.org/10.1007/s11746-013- 2242-z. | pl_PL |
dc.references | Kato, S.; Shimizu, N.; Otoki, Y.; Ito, J.; Sakaino, M.; Sano, T.; Takeuchi, S.; Imagi, J.; Nakagawa, K. Determination of acrolein generation pathways from linoleic acid and linolenic acid: Increment by photo irradiation. NPJ Sci. Food 2022, 6, 21. https://doi.org/10.1038/s41538-022-00138-2. | pl_PL |
dc.references | Pedersen, J.R.; Ingemarsson, Å .; Olsson, J.O. Oxidation of rapeseed oil, rapeseed methyl ester (RME) and diesel fuel studied with GC/MS. Chemosphere 1999, 38, 2467–2474. https://doi.org/10.1016/S0045-6535(98)00452-4. | pl_PL |
dc.references | Katragadda, H.R.; Fullana, A.; Sidhu, S.; Carbonell-Barrachina, Á .A. Emissions of volatile aldehydes from heated cooking oils. Food Chem. 2010, 120, 59–65. https://doi.org/10.1016/j.foodchem.2009.09.070. | pl_PL |
dc.references | Chan, W.R.; Sidheswaran, M.; Sullivan, D.P.; Cohn, S.; Fisk, W.J. Cooking-related PM2.5 and acrolein measured in grocery stores and comparison with other retail types. Indoor Air 2016, 26, 489–500. https://doi.org/10.1111/ina.12218. | pl_PL |
dc.references | Shibata, A.; Uemura, M.; Hosokawa, M.; Miyashita, K. Formation of Acrolein in the Autoxidation of Triacylglycerols with Different Fatty Acid Compositions. J. Am. Oil. Chem. Soc. 2015, 92, 1661–1670. https://doi.org/10.1007/s11746-015-2732-2. | pl_PL |
dc.references | Shibata, A.; Uemura, M.; Hosokawa, M.; Miyashita, K. Acrolein as a Major Volatile in the Early Stages of Fish Oil TAG Oxidation. J. Oleo Sci. 2018, 67, 515–524. https://doi.org/10.5650/jos.ess17235. | pl_PL |
dc.references | Pop-Busui, R.; Januzzi, J.L.; Bruemmer, D.; Butalia, S.; Green, J.B.; Horton, W.B.; Knight, C.; Levi, M.; Rasouli, N.; Richardson, C.R. Heart Failure: An Underappreciated Complication of Diabetes. A Consensus Report of the American Diabetes Association. Diabetes Care 2022, 45, 1670–1690. https://doi.org/10.2337/dci22-0014. | pl_PL |
dc.references | Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843. | pl_PL |
dc.references | Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020, 16, 377–390. https://doi.org/10.1038/s41581-020-0278-5. | pl_PL |
dc.references | Ansari, P.; Tabasumma, N.; Snigdha, N.N.; Siam, N.H.; Panduru, R.V.N.R.S.; Azam, S.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Diabetic Retinopathy: An Overview on Mechanisms, Pathophysiology and Pharmacotherapy. Diabetology 2022, 3, 159–175. https://doi.org/10.3390/diabetology3010011. | pl_PL |
dc.references | Pelle, M.C.; Provenzano, M.; Busutti, M.; Porcu, C.V.; Zaffina, I.; Stanga, L.; Arturi, F. Up-Date on Diabetic Nephropathy. Life 2022, 12, 1202. https://doi.org/10.3390/life12081202. | pl_PL |
dc.references | Henning, R.J.; Johnson, G.T.; Coyle, J.P.; Harbison, R.D. Acrolein Can Cause Cardiovascular Disease: A Review. Cardiovasc. Toxicol. 2017, 17, 227–236. https://doi.org/10.1007/s12012-016-9396-5. | pl_PL |
dc.references | Chang, X.; Wang, Y.; Zheng, B.; Chen, Y.; Xie, J.; Song, Y.; Ding, X.; Hu, X.; Hu, X.; Yu, Q. The Role of Acrolein in Neurodegenerative Diseases and Its Protective Strategy. Foods 2022, 11, 3203. https://doi.org/10.3390/foods11203203. | pl_PL |
dc.references | Carcinogenicity of acrolein, crotonaldehyde, and arecoline. Lancet Oncol. 2021, 22, 19–20. https://doi.org/10.1016/S1470- 2045(20)30727-0. | pl_PL |
dc.references | Feroe, A.G.; Attanasio, R.; Scinicariello, F. Acrolein metabolites, diabetes and insulin resistance. Environ. Res. 2016, 148, 1–6. https://doi.org/10.1016/j.envres.2016.03.015. | pl_PL |
dc.references | Tong, Z.-J.; Kuo, C.-W.; Yen, P.-C.; Lin, C.-C.; Tsai, M.-T.; Lu, S.-H.; Chang, Y.-P.; Liu, W.-S.; Tsou, H.-H.; Cheng, H.-W.; et al. Acrolein plays a culprit role in the pathogenesis of diabetic nephropathy in vitro and in vivo. Eur. J. Endocrinol. 2022, 187, 579– 592. https://doi.org/10.1530/EJE-22-0493. | pl_PL |
dc.references | Daimon, M.; Sugiyama, K.; Kameda, W.; Saitoh, T.; Oizumi, T.; Hirata, A.; Yamaguchi, H.; Ohnuma, H.; Igarashi, M.; Kato, T. Increased urinary levels of pentosidine, pyrraline and acrolein adduct in type 2 diabetes. Endocr. J. 2003, 50, 61–67. https://doi.org/10.1507/endocrj.50.61. | pl_PL |
dc.references | Ali, M.F.B.; Kishikawa, N.; Ohyama, K.; Mohamed, H.A.-M.; Abdel-Wadood, H.M.; Mahmoud, A.M.; Imazato, T.; Ueki, Y.; Wada, M.; Kuroda, N. Chromatographic determination of low-molecular mass unsaturated aliphatic aldehydes with peroxyoxalate chemiluminescence detection after fluorescence labeling with 4-(N,N-dimethylaminosulfonyl)-7-hydrazino-2,1,3-benzoxadiazole. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 953–954, 147–152. https://doi.org/10.1016/j.jchromb.2014.02.009. | pl_PL |
dc.references | McDowell, R.E.; Barabas, P.; Augustine, J.; Chevallier, O.; McCarron, P.; Chen, M.; McGeown, J.G.; Curtis, T.M. Müller glial dysfunction during diabetic retinopathy in rats is reduced by the acrolein-scavenging drug, 2-hydrazino-4,6-dimethylpyrimidine. Diabetologia 2018, 61, 2654–2667. https://doi.org/10.1007/s00125-018-4707-y. | pl_PL |
dc.references | Tsukahara, H.; Sekine, K.; Uchiyama, M.; Kawakami, H.; Hata, I.; Todoroki, Y.; Hiraoka, M.; Kaji, M.; Yorifuji, T.; Momoi, T.; et al. Formation of advanced glycosylation end products and oxidative stress in young patients with type 1 diabetes. Pediatr. Res. 2003, 54, 419–424. https://doi.org/10.1203/01.PDR.0000076662.72100.74. | pl_PL |
dc.references | Murata, M.; Noda, K.; Ishida, S. Pathological Role of Unsaturated Aldehyde Acrolein in Diabetic Retinopathy. Front. Immunol. 2020, 11, 589531. https://doi.org/10.3389/fimmu.2020.589531. | pl_PL |
dc.references | Fukutsu, K.; Murata, M.; Kikuchi, K.; Yoshida, S.; Noda, K.; Ishida, S. ROCK1 Mediates Retinal Glial Cell Migration Promoted by Acrolein. Front. Med. 2021, 8, 717602. https://doi.org/10.3389/fmed.2021.717602. | pl_PL |
dc.references | Yao, L.; Wu, Y.-T.; Tian, G.-X.; Xia, C.-Q.; Zhang, F.; Zhang, W. Acrolein Scavenger Hydralazine Prevents Streptozotocin-Induced Painful Diabetic Neuropathy and Spinal Neuroinflammation in Rats. Anat. Rec. 2017, 300, 1858–1864. https://doi.org/10.1002/ar.23618. | pl_PL |
dc.references | Dong, Y.; Noda, K.; Murata, M.; Yoshida, S.; Saito, W.; Kanda, A.; Ishida, S. Localization of Acrolein-Lysine Adduct in Fibrovascular Tissues of Proliferative Diabetic Retinopathy. Curr. Eye Res. 2017, 42, 111–117. https://doi.org/10.3109/02713683.2016.1150491. | pl_PL |
dc.references | Grigsby, J.; Betts, B.; Vidro-Kotchan, E.; Culbert, R.; Tsin, A. A possible role of acrolein in diabetic retinopathy: Involvement of a VEGF/TGFβ signaling pathway of the retinal pigment epithelium in hyperglycemia. Curr. Eye Res. 2012, 37, 1045–1053. https://doi.org/10.3109/02713683.2012.713152. | pl_PL |
dc.references | Masaki, H.; Sinomiya, D.; Okano, Y.; Yoshida, M.; Iwabuchi, T. Impact of protein carbonylation on the chemical characteristics of the hair surface. Int. J. Cosmet. Sci. 2021, 43, 764–771. https://doi.org/10.1111/ics.12743. | pl_PL |
dc.references | Kaminskas, L.M.; Pyke, S.M.; Burcham, P.C. Michael addition of acrolein to lysinyl and N-terminal residues of a model peptide: Targets for cytoprotective hydrazino drugs. Rapid Commun. Mass Spectrom. 2007, 21, 1155–1164. https://doi.org/10.1002/rcm.2945. | pl_PL |
dc.references | Cai, J.; Bhatnagar, A.; Pierce, W.M. Protein modification by acrolein: Formation and stability of cysteine adducts. Chem. Res. Toxicol. 2009, 22, 708–716. https://doi.org/10.1021/tx800465m. | pl_PL |
dc.references | Yong, P.H.; Zong, H.; Medina, R.J.; Limb, G.A.; Uchida, K.; Stitt, A.W.; Curtis, T.M. Evidence supporting a role for N-(3-formyl- 3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy. Mol. Vis. 2010, 16, 2524–2538. | pl_PL |
dc.references | Murata, M.; Noda, K.; Kawasaki, A.; Yoshida, S.; Dong, Y.; Saito, M.; Dong, Z.; Ando, R.; Mori, S.; Saito, W.; et al. Soluble Vascular Adhesion Protein-1 Mediates Spermine Oxidation as Semicarbazide-Sensitive Amine Oxidase: Possible Role in Proliferative Diabetic Retinopathy. Curr. Eye Res. 2017, 42, 1674–1683. https://doi.org/10.1080/02713683.2017.1359847. | pl_PL |
dc.references | Dasgupta, A.; Zheng, J.; Bizzozero, O.A. Protein carbonylation and aggregation precede neuronal apoptosis induced by partial glutathione depletion. ASN Neuro 2012, 4, AN20110064. https://doi.org/10.1042/AN20110064. | pl_PL |
dc.references | Mohammad, G.; Alam, K.; Nawaz, M.I.; Siddiquei, M.M.; Mousa, A.; Abu El-Asrar, A.M. Mutual enhancement between highmobility group box-1 and NADPH oxidase-derived reactive oxygen species mediates diabetes-induced upregulation of retinal apoptotic markers. J. Physiol. Biochem. 2015, 71, 359–372. https://doi.org/10.1007/s13105-015-0416-x. | pl_PL |
dc.references | Feng, Z.; Liu, Z.; Li, X.; Jia, H.; Sun, L.; Tian, C.; Jia, L.; Liu, J. α-Tocopherol is an effective Phase II enzyme inducer: Protective effects on acrolein-induced oxidative stress and mitochondrial dysfunction in human retinal pigment epithelial cells. J. Nutr. Biochem. 2010, 21, 1222–1231. https://doi.org/10.1016/j.jnutbio.2009.10.010. | pl_PL |
dc.references | Murata, M.; Noda, K.; Yoshida, S.; Saito, M.; Fujiya, A.; Kanda, A.; Ishida, S. Unsaturated Aldehyde Acrolein Promotes Retinal Glial Cell Migration. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4425–4435. https://doi.org/10.1167/iovs.19-27346. | pl_PL |
dc.references | Wang, Y.; Tao, J.; Jiang, M.; Yao, Y. Apocynin ameliorates diabetic retinopathy in rats: Involvement of TLR4/NF-κB signaling pathway. Int. Immunopharmacol. 2019, 73, 49–56. https://doi.org/10.1016/j.intimp.2019.04.062. | pl_PL |
dc.references | Kang, Q.; Yang, C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020, 37, 101799. https://doi.org/10.1016/j.redox.2020.101799. | pl_PL |
dc.references | Vodošek Hojs, N.; Bevc, S.; Ekart, R.; Hojs, R. Oxidative Stress Markers in Chronic Kidney Disease with Emphasis on Diabetic Nephropathy. Antioxidants 2020, 9, 925. https://doi.org/10.3390/antiox9100925. | pl_PL |
dc.references | Jia, L.; Liu, Z.; Sun, L.; Miller, S.S.; Ames, B.N.; Cotman, C.W.; Liu, J. Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: Protection by (R)-alpha-lipoic acid. Investig. Ophthalmol. Vis. Sci. 2007, 48, 339–348. https://doi.org/10.1167/iovs.06-0248. | pl_PL |
dc.references | Di Wu; Noda, K.; Murata, M.; Liu, Y.; Kanda, A.; Ishida, S. Regulation of Spermine Oxidase through Hypoxia-Inducible Factor- 1α Signaling in Retinal Glial Cells under Hypoxic Conditions. Investig. Ophthalmol. Vis. Sci. 2020, 61, 52. https://doi.org/10.1167/iovs.61.6.52. | pl_PL |
dc.references | Kowluru, R.A.; Mishra, M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim. Biophys. Acta 2015, 1852, 2474–2483. https://doi.org/10.1016/j.bbadis.2015.08.001. | pl_PL |
dc.references | Forbes, J.M.; Thorburn, D.R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol. 2018, 14, 291–312. https://doi.org/10.1038/nrneph.2018.9. | pl_PL |
dc.references | Li, Y.; Zou, X.; Cao, K.; Xu, J.; Yue, T.; Dai, F.; Zhou, B.; Lu, W.; Feng, Z.; Liu, J. Curcumin analog 1, 5-bis (2-trifluoromethylphenyl)- 1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicol. Appl. Pharmacol. 2013, 272, 726–735. https://doi.org/10.1016/j.taap.2013.07.029. | pl_PL |
dc.references | Liu, Z.; Sun, L.; Zhu, L.; Jia, X.; Li, X.; Jia, H.; Wang, Y.; Weber, P.; Long, J.; Liu, J. Hydroxytyrosol protects retinal pigment epithelial cells from acrolein-induced oxidative stress and mitochondrial dysfunction. J. Neurochem. 2007, 103, 2690–2700. https://doi.org/10.1111/j.1471-4159.2007.04954.x. | pl_PL |
dc.references | Wang, C.-C.; Chen, H.-J.; Chan, D.-C.; Chiu, C.-Y.; Liu, S.-H.; Lan, K.-C. Low-Dose Acrolein, an Endogenous and Exogenous Toxic Molecule, Inhibits Glucose Transport via an Inhibition of Akt-Regulated GLUT4 Signaling in Skeletal Muscle Cells. Int. J. Mol. Sci. 2021, 22, 7228. https://doi.org/10.3390/ijms22137228. | pl_PL |
dc.references | Livingstone, R.; Bryant, N.J.; Boyle, J.G.; Petrie, J.R.; Gould, G.W. Diabetes is accompanied by changes in the levels of proteins involved in endosomal GLUT4 trafficking in obese human skeletal muscle. Endocrinol. Diabetes Metab. 2022, 5, e361. https://doi.org/10.1002/edm2.361. | pl_PL |
dc.references | Liu, F.; Saul, A.B.; Pichavaram, P.; Xu, Z.; Rudraraju, M.; Somanath, P.R.; Smith, S.B.; Caldwell, R.B.; Narayanan, S.P. Pharmacological Inhibition of Spermine Oxidase Reduces Neurodegeneration and Improves Retinal Function in Diabetic Mice. J. Clin. Med. 2020, 9, 340. https://doi.org/10.3390/jcm9020340. | pl_PL |
dc.references | Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042. | pl_PL |
dc.references | Vitalakumar, D.; Sharma, A.; Flora, S.J.S. Ferroptosis: A potential therapeutic target for neurodegenerative diseases. J. Biochem. Mol. Toxicol. 2021, 35, e22830. https://doi.org/10.1002/jbt.22830. | pl_PL |
dc.references | Dang, X.; Huan, X.; Du, X.; Chen, X.; Bi, M.; Yan, C.; Jiao, Q.; Jiang, H. Correlation of Ferroptosis and Other Types of Cell Death in Neurodegenerative Diseases. Neurosci. Bull. 2022, 38, 938–952. https://doi.org/10.1007/s12264-022-00861-6. | pl_PL |
dc.references | Qi, H.; Kan, K.; Sticht, C.; Bennewitz, K.; Li, S.; Qian, X.; Poschet, G.; Kroll, J. Acrolein-inducing ferroptosis contributes to impaired peripheral neurogenesis in zebrafish. Front. Neurosci. 2022, 16, 1044213. https://doi.org/10.3389/fnins.2022.1044213. | pl_PL |
dc.references | Xiong, R.; Wu, Q.; Muskhelishvili, L.; Davis, K.; Shemansky, J.M.; Bryant, M.; Rosenfeldt, H.; Healy, S.M.; Cao, X. Evaluating Mode of Action of Acrolein Toxicity in an In Vitro Human Airway Tissue Model. Toxicol. Sci. 2018, 166, 451–464. https://doi.org/10.1093/toxsci/kfy226. | pl_PL |
dc.references | Comer, D.M.; Elborn, J.S.; Ennis, M. Inflammatory and cytotoxic effects of acrolein, nicotine, acetylaldehyde and cigarette smoke extract on human nasal epithelial cells. BMC Pulm. Med. 2014, 14, 32. https://doi.org/10.1186/1471-2466-14-32. | pl_PL |
dc.references | Sorrentino, F.S.; Allkabes, M.; Salsini, G.; Bonifazzi, C.; Perri, P. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci. 2016, 162, 54–59. https://doi.org/10.1016/j.lfs.2016.08.001. | pl_PL |
dc.references | Yang, S.; Zhang, J.; Chen, L. The cells involved in the pathological process of diabetic retinopathy. Biomed. Pharmacother. 2020, 132, 110818. https://doi.org/10.1016/j.biopha.2020.110818. | pl_PL |
dc.references | Vujosevic, S.; Micera, A.; Bini, S.; Berton, M.; Esposito, G.; Midena, E. Aqueous Humor Biomarkers of Müller Cell Activation in Diabetic Eyes. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3913–3918. https://doi.org/10.1167/iovs.15-16554. | pl_PL |
dc.references | Picconi, F.; Parravano, M.; Sciarretta, F.; Fulci, C.; Nali, M.; Frontoni, S.; Varano, M.; Caccuri, A.M. Activation of retinal Müller cells in response to glucose variability. Endocrine 2019, 65, 542–549. https://doi.org/10.1007/s12020-019-02017-5. | pl_PL |
dc.references | Roy, S.; Amin, S.; Roy, S. Retinal fibrosis in diabetic retinopathy. Exp. Eye Res. 2016, 142, 71–75. https://doi.org/10.1016/j.exer.2015.04.004. | pl_PL |
dc.references | Rodrigues, M.; Xin, X.; Jee, K.; Babapoor-Farrokhran, S.; Kashiwabuchi, F.; Ma, T.; Bhutto, I.; Hassan, S.J.; Daoud, Y.; Baranano, D.; et al. VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes 2013, 62, 3863–3873. https://doi.org/10.2337/db13-0014. | pl_PL |
dc.references | Lange, C.A.K.; Stavrakas, P.; Luhmann, U.F.O.; Silva, D.J. de; Ali, R.R.; Gregor, Z.J.; Bainbridge, J.W.B. Intraocular oxygen distribution in advanced proliferative diabetic retinopathy. Am. J. Ophthalmol. 2011, 152, 406–412.e3. https://doi.org/10.1016/j.ajo.2011.02.014. | pl_PL |
dc.references | Fukutsu, K.; Noda, K.; Murata, M.; Yoshida, S.; Kanda, A.; Ishida, S. Role of acrolein and ROCK1 in retinal glial cells. Investig. Ophthalmol. Vis. Sci. 2020, 61, 311. | pl_PL |
dc.references | Rothschild, P.-R.; Salah, S.; Berdugo, M.; Gélizé, E.; Delaunay, K.; Naud, M.-C.; Klein, C.; Moulin, A.; Savoldelli, M.; Bergin, C.; et al. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy. Sci. Rep. 2017, 7, 8834. https://doi.org/10.1038/s41598-017-07329-y. | pl_PL |
dc.references | Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic liver disease. Nat. Rev. Dis. Primers 2018, 4, 16. https://doi.org/10.1038/s41572-018-0014-7. | pl_PL |
dc.references | Mitra, S.; De, A.; Chowdhury, A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl. Gastroenterol. Hepatol. 2020, 5, 16. https://doi.org/10.21037/tgh.2019.09.08. | pl_PL |
dc.references | Stickel, F.; Datz, C.; Hampe, J.; Bataller, R. Pathophysiology and Management of Alcoholic Liver Disease: Update 2016. Gut Liver 2017, 11, 173–188. https://doi.org/10.5009/gnl16477. | pl_PL |
dc.references | Dunn, W.; Shah, V.H. Pathogenesis of Alcoholic Liver Disease. Clin. Liver Dis. 2016, 20, 445–456. https://doi.org/10.1016/j.cld.2016.02.004. | pl_PL |
dc.references | Cohen, S.M. Alcoholic Liver Disease. Clin. Liver Dis. 2016, 20, xiii–xiv. https://doi.org/10.1016/j.cld.2016.05.001. | pl_PL |
dc.references | Chen, W.-Y.; Zhang, J.; Ghare, S.; Barve, S.; McClain, C.; Joshi-Barve, S. Acrolein Is a Pathogenic Mediator of Alcoholic Liver Disease and the Scavenger Hydralazine Is Protective in Mice. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 685–700. https://doi.org/10.1016/j.jcmgh.2016.05.010. | pl_PL |
dc.references | Liu, D.; Cheng, Y.; Mei, X.; Xie, Y.; Tang, Z.; Liu, J.; Cao, X. Mechanisms of acrolein induces toxicity in human umbilical vein endothelial cells: Oxidative stress, DNA damage response, and apoptosis. Environ. Toxicol. 2022, 37, 708–719. https://doi.org/10.1002/tox.23436. | pl_PL |
dc.references | Liu, D.; Cheng, Y.; Tang, Z.; Mei, X.; Cao, X.; Liu, J. Toxicity mechanism of acrolein on DNA damage and apoptosis in BEAS-2B cells: Insights from cell biology and molecular docking analyses. Toxicology 2022, 466, 153083. https://doi.org/10.1016/j.tox.2021.153083. | pl_PL |
dc.references | Rashad, W.A.; Sakr, S.; Domouky, A.M. Comparative study of oral versus parenteral crocin in mitigating acrolein-induced lung injury in albino rats. Sci. Rep. 2022, 12, 10233. https://doi.org/10.1038/s41598-022-14252-4. | pl_PL |
dc.references | Mohammad, M.K.; Avila, D.; Zhang, J.; Barve, S.; Arteel, G.; McClain, C.; Joshi-Barve, S. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress. Toxicol. Appl. Pharmacol. 2012, 265, 73– 82. https://doi.org/10.1016/j.taap.2012.09.021. | pl_PL |
dc.references | Aydın, B.; Oğuz, A.; Şekeroğlu, V.; Atlı Şekeroğlu, Z. Whey protein protects liver mitochondrial function against oxidative stress in rats exposed to acrolein. Arh. Hig. Rada Toksikol. 2022, 73, 200–206. https://doi.org/10.2478/aiht-2022-73-3640. | pl_PL |
dc.references | Yin, Z.; Guo, H.; Jiang, K.; Ou, J.; Wang, M.; Huang, C.; Liu, F.; Bai, W.; Zheng, J.; Ou, S. Morin decreases acrolein-induced cell injury in normal human hepatocyte cell line LO2. J. Funct. Foods 2020, 75, 104234. https://doi.org/10.1016/j.jff.2020.104234. | pl_PL |
dc.references | Vatsalya, V.; Kong, M.; Gobejishvili, L.; Chen, W.-Y.; Srivastava, S.; Barve, S.; McClain, C.; Joshi-Barve, S. Urinary acrolein metabolite levels in severe acute alcoholic hepatitis patients. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G115–G122. https://doi.org/10.1152/ajpgi.00209.2018. | pl_PL |
dc.references | Shah, H.; Speen, A.M.; Saunders, C.; Brooke, E.A.S.; Nallasamy, P.; Zhu, H.; Li, Y.R.; Jia, Z. Protection of HepG2 cells against acrolein toxicity by 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide via glutathione-mediated mechanism. Exp. Biol. Med. 2015, 240, 1340–1351. https://doi.org/10.1177/1535370214563900. | pl_PL |
dc.references | Shafie, B.; Pourahmad, J.; Rezaei, M. N-acetylcysteine is more effective than ellagic acid in preventing acrolein induced dysfunction in mitochondria isolated from rat liver. J. Food Biochem. 2021, 45, e13775. https://doi.org/10.1111/jfbc.13775. | pl_PL |
dc.references | Myers, C.R.; Myers, J.M. The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells. Toxicology 2009, 257, 95–104. https://doi.org/10.1016/j.tox.2008.12.013. | pl_PL |
dc.references | Myers, C.R.; Myers, J.M.; Kufahl, T.D.; Forbes, R.; Szadkowski, A. The effects of acrolein on the thioredoxin system: Implications for redox-sensitive signaling. Mol. Nutr. Food Res. 2011, 55, 1361–1374. https://doi.org/10.1002/mnfr.201100224. | pl_PL |
dc.references | Spiess, P.C.; Deng, B.; Hondal, R.J.; Matthews, D.E.; van der Vliet, A. Proteomic profiling of acrolein adducts in human lung epithelial cells. J. Proteom. 2011, 74, 2380–2394. https://doi.org/10.1016/j.jprot.2011.05.039. | pl_PL |
dc.references | Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. https://doi.org/10.3390/ijms21072346. | pl_PL |
dc.references | Park, S.L.; Le Marchand, L.; Cheng, G.; Balbo, S.; Chen, M.; Carmella, S.G.; Thomson, N.M.; Lee, Y.; Patel, Y.M.; Stram, D.O.; et al. Quantitation of DNA Adducts Resulting from Acrolein Exposure and Lipid Peroxidation in Oral Cells of Cigarette Smokers from Three Racial/Ethnic Groups with Differing Risks for Lung Cancer. Chem. Res. Toxicol. 2022, 35, 1914–1922. https://doi.org/10.1021/acs.chemrestox.2c00171. | pl_PL |
dc.references | Tsou, H.-H.; Hu, C.-H.; Liu, J.-H.; Liu, C.-J.; Lee, C.-H.; Liu, T.-Y.; Wang, H.-T. Acrolein Is Involved in the Synergistic Potential of Cigarette Smoking- and Betel Quid Chewing-Related Human Oral Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 954–962. https://doi.org/10.1158/1055-9965.EPI-18-1033. | pl_PL |
dc.references | Matsumoto, M.; Yamano, S.; Senoh, H.; Umeda, Y.; Hirai, S.; Saito, A.; Kasai, T.; Aiso, S. Carcinogenicity and chronic toxicity of acrolein in rats and mice by two-year inhalation study. Regul. Toxicol. Pharmacol. 2021, 121, 104863. https://doi.org/10.1016/j.yrtph.2021.104863. | pl_PL |
dc.references | Peterson, L.A.; Seabloom, D.; Smith, W.E.; Vevang, K.R.; Seelig, D.M.; Zhang, L.; Wiedmann, T.S. Acrolein Increases the Pulmonary Tumorigenic Activity of the Tobacco-Specific Nitrosamine 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Chem. Res. Toxicol. 2022, 35, 1831–1839. https://doi.org/10.1021/acs.chemrestox.2c00135. | pl_PL |
dc.references | Hong, J.-H.; Tong, Z.-J.; Wei, T.-E.; Lu, Y.-C.; Huang, C.-Y.; Huang, C.-Y.; Chiang, C.-H.; Jaw, F.-S.; Cheng, H.-W.; Wang, H.-T. Cigarette Smoke Containing Acrolein Contributes to Cisplatin Resistance in Human Bladder Cancers through the Regulation of HER2 Pathway or FGFR3 Pathway. Mol. Cancer Ther. 2022, 21, 1010–1019. https://doi.org/10.1158/1535-7163.MCT-21-0725. | pl_PL |
dc.references | Zarkovic, K.; Uchida, K.; Kolenc, D.; Hlupic, L.; Zarkovic, N. Tissue distribution of lipid peroxidation product acrolein in human colon carcinogenesis. Free Radic. Res. 2006, 40, 543–552. https://doi.org/10.1080/10715760500370048. | pl_PL |
dc.references | Gao, J.; Zou, X.; Yang, L.; Feng, Z.; Liu, J. Hydroxytyrosol protects against acrolein induced preosteoblast cell toxicity: Involvement of Nrf2/Keap1 pathway. J. Funct. Foods 2015, 19, 28–38. https://doi.org/10.1016/j.jff.2015.09.010. | pl_PL |
dc.references | Tirumalai, R.; Rajesh Kumar, T.; Mai, K.H.; Biswal, S. Acrolein causes transcriptional induction of phase II genes by activation of Nrf2 in human lung type II epithelial (A549) cells. Toxicol. Lett. 2002, 132, 27–36. https://doi.org/10.1016/s0378-4274(02)00055- 3. | pl_PL |
dc.references | Feng, Z.; Hu, W.; Hu, Y.; Tang, M. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc. Natl. Acad. Sci. USA 2006, 103, 15404–15409. https://doi.org/10.1073/pnas.0607031103. | pl_PL |
dc.references | Jain, V.; Alcheva, A.; Huang, D.; Caruso, R.; Jain, A.; Lay, M.; O'Connor, R.; Stepanov, I. Comprehensive Chemical Characterization of Natural American Spirit Cigarettes. Tob. Regul. Sci. 2019, 5, 381–399. https://doi.org/10.18001/trs.5.4.8. | pl_PL |
dc.references | Wells, J.M.; O’Reilly, P.J.; Szul, T.; Sullivan, D.I.; Handley, G.; Garrett, C.; McNicholas, C.M.; Roda, M.A.; Miller, B.E.; Tal-Singer, R.; et al. An Aberrant Leukotriene A 4 Hydrolase–Proline-Glycine-Proline Pathway in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2014, 190, 51–61. https://doi.org/10.1164/rccm.201401-0145OC. | pl_PL |
dc.references | Choudhury, S.; Dyba, M.; Pan, J.; Roy, R.; Chung, F.-L. Repair kinetics of acrolein- and (E)-4-hydroxy-2-nonenal-derived DNA adducts in human colon cell extracts. Mutat. Res. 2013, 751–752, 15–23. https://doi.org/10.1016/j.mrfmmm.2013.09.004. | pl_PL |
dc.references | Lee, H.-W.; Wang, H.-T.; Weng, M.; Chin, C.; Huang, W.; Lepor, H.; Wu, X.-R.; Rom, W.N.; Chen, L.-C.; Tang, M. Cigarette sidestream smoke lung and bladder carcinogenesis: Inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation. Oncotarget 2015, 6, 33226–33236. https://doi.org/10.18632/oncotarget. 5429. | pl_PL |
dc.contributor.authorEmail | pawel.hikisz@biol.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.3390/ijms24076579 | |
dc.discipline | nauki biologiczne | pl_PL |