Pokaż uproszczony rekord

dc.contributor.authorHe, Ke
dc.contributor.authorBabik, Wiesław
dc.contributor.authorMinias, Piotr
dc.contributor.authorMajda, Mateusz
dc.date.accessioned2023-06-16T05:41:43Z
dc.date.available2023-06-16T05:41:43Z
dc.date.issued2023
dc.identifier.citationKe He and others, MHC Architecture in Amphibians—Ancestral Reconstruction, Gene Rearrangements, and Duplication Patterns, Genome Biology and Evolution, Volume 15, Issue 5, May 2023, evad079, https://doi.org/10.1093/gbe/evad079pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/47290
dc.description.abstractThe hypervariable major histocompatibility complex (MHC) is a crucial component of vertebrate adaptive immunity, but largescale studies on MHC macroevolution in nonmodel vertebrates have long been constrained by methodological limitations. Here, we used rapidly accumulating genomic data to reconstruct macroevolution of the MHC region in amphibians. We retrieved contigs containing the MHC region from genome assemblies of 32 amphibian species and examined major structural rearrangements, duplication patterns, and gene structure across the amphibian phylogeny. Based on the few available caecilian and urodele genomes, we showed that the structure of ancestral MHC region in amphibians was probably relatively simple and compact, with a close physical linkage between MHC-I and MHC-II regions. This ancestral MHC architecture was generally conserved in anurans, although the evolution of class I subregion proceeded toward more extensive duplication and rapid expansion of gene copy number, providing evidence for dynamic evolutionary trajectories. Although, in anurans, we recorded tandems of duplicated MHC-I genes outside the core subregion, our phylogenetic analyses of MHC-I sequences provided little support for an expansion of nonclassical MHC-Ib genes across amphibian families. Finally, we found that intronic regions of amphibian classical MHC genes were much longer when compared with other tetrapod lineages (birds and mammals), which could partly be driven by the expansion of genome size. Our study reveals novel evolutionary patterns of the MHC region in amphibians and provides a comprehensive framework for further studies on the MHC macroevolution across vertebrates.pl_PL
dc.language.isoenpl_PL
dc.publisherOxford University Presspl_PL
dc.relation.ispartofseriesGenome Biology and Evolution;5
dc.rightsUznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectamphibianspl_PL
dc.subjectcopy number variationpl_PL
dc.subjectgenomic datapl_PL
dc.subjectmajor histocompatibility complexpl_PL
dc.subjectMHC architecturepl_PL
dc.subjectmacroevolutionpl_PL
dc.titleMHC Architecture in Amphibians—Ancestral Reconstruction, Gene Rearrangements, and Duplication Patternspl_PL
dc.typeArticlepl_PL
dc.page.number20pl_PL
dc.contributor.authorAffiliationCollege of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, Chinapl_PL
dc.contributor.authorAffiliationInstitute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Polandpl_PL
dc.identifier.eissn1759-6653
dc.referencesAbduriyim S, Zou DH, Zhao H. 2019. Origin and evolution of the major histocompatibility complex class I region in eutherian mammals. Ecol Evol. 9:7861–7874.pl_PL
dc.referencesAdams EJ, Luoma AM. 2013. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I–like molecules. Ann Rev Immunol. 31:529–561.pl_PL
dc.referencesAlmeida T, et al. 2021. A highly complex, MHC-linked, 350 million-year-old shark nonclassical class I lineage. J Immunol. 207:824–836.pl_PL
dc.referencesAndersson L, Lundén A, Sigurdardottir S, Davies CJ, Rask L. 1988. Linkage relationships in the bovine MHC region. High recombination frequency between class II subregions. Immunogenetics 27:273–280.pl_PL
dc.referencesArnaiz-Villena A, et al. 2010. Songbirds conserved sites and intron size of MHC class I molecules reveal a unique evolution in vertebrates. Open Ornithol J. 3:156–165.pl_PL
dc.referencesBates D, Mächler M, Bolker B, Walker S. 2014. Fitting linear mixed-effects models using lme4. J Stat Softw. 67:1–48.pl_PL
dc.referencesBelov K, et al. 2006. Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex. PLoS Biol. 4:e46.pl_PL
dc.referencesBentkowski P, Radwan J. 2019. Evolution of major histocompatibility complex gene copy number. PLoS Comput Biol. 15:e1007015.pl_PL
dc.referencesBrown T, et al. 2022. Sequencing and chromosome-scale assembly of the giant Pleurodeles waltl genome. bioRxiv: 2022.2010.2019.512763. doi: 10.1101/2022.10.19.512763.pl_PL
dc.referencesCannatella D. 2015. Xenopus in space and time: fossils, node calibrations, tip-dating, and paleobiogeography. Cytogenet Genome Res. 145:283–301.pl_PL
dc.referencesCard DC, et al. 2022. Structure and evolution of the squamate major histocompatibility complex as revealed by two Anolis lizard genomes. Front Genet. 13:979746.pl_PL
dc.referencesDarriba D, et al. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 37:291–294.pl_PL
dc.referencesde Sá ALA, et al. 2019. The marine mammal class II major histocompatibility complex organization. Front Immunol. 10:696.pl_PL
dc.referencesDijkstra KK, et al. 2018. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174:1586–1598.pl_PL
dc.referencesEdholm E-S, et al. 2013. Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians. Proc Natl Acad Sci U S A. 110:14342–14347.pl_PL
dc.referencesEdholm E-S, Banach M, Hyoe Rhoo K, Pavelka Jr MS, Robert J. 2018. Distinct MHC class I-like interacting invariant T cell lineage at the forefront of mycobacterial immunity uncovered in Xenopus. Proc Natl Acad Sci U S A. 115:E4023–E4031.pl_PL
dc.referencesEdholm E-S, Grayfer L, Robert J. 2014. Evolution of nonclassical MHC-dependent invariant T cells. Cell Mol Life Sci. 71:4763–4780.pl_PL
dc.referencesEdler D, Klein J, Antonelli A, Silvestro D. 2021. raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol Evol. 12:373–377.pl_PL
dc.referencesElliott TA, Gregory TR. 2015. What's in a genome? The C-value enigma and the evolution of eukaryotic genome content. Phil Trans R Soc B. 370:20140331.pl_PL
dc.referencesFlajnik MF, et al. 1986. Major histocompatibility complex-encoded class I molecules are absent in immunologically competent Xenopus before metamorphosis. J Immunol. 137:3891–3899.pl_PL
dc.referencesFlajnik M, et al. 1993. A novel type of class I gene organization in vertebrates: a large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J. 12:4385–4396.pl_PL
dc.referencesFlajnik MF. 2018. A cold-blooded view of adaptive immunity. Nat Rev Immunol. 18:438–453.pl_PL
dc.referencesGarrido F, Algarra I. 2001. MHC antigens and tumor escape from immune surveillance. Adv Cancer Res. 83:117–158.pl_PL
dc.referencesGemmell NJ, et al. 2020. The tuatara genome reveals ancient features of amniote evolution. Nature 584:403–409.pl_PL
dc.referencesGeraghty DE, Daza R, Williams LM, Vu Q, Ishitani A. 2002. Genetics of the immune response: identifying immune variation within the MHC and throughout the genome. Immunol Rev. 190:69–85.pl_PL
dc.referencesGoyos A, Sowa J, Ohta Y, Robert J. 2011. Remarkable conservation of distinct nonclassical MHC class I lineages in divergent amphibian species. J Immunol. 186:372–381.pl_PL
dc.referencesGregory TR. 2022. Animal genome size database. Available at http://www. genomesize.com.pl_PL
dc.referencesGuan D, et al. 2020. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36:2896–2898.pl_PL
dc.referencesHe K, Liang C, et al. 2022. Reconstructing macroevolutionary patterns in avian MHC architecture with genomic data. Frontiers Genet. 13:823686.pl_PL
dc.referencesHe K, Minias P, Dunn PO. 2020. Long-read genome assemblies reveal extraordinary variation in the number and structure of MHC loci in birds. Genome Biol Evol. 13:evaa270.pl_PL
dc.referencesHe K, Zhu Y, et al. 2022. Major histocompatibility complex genomic investigation of endangered Chinese alligator provides insights into the evolution of tetrapod major histocompatibility complex and survival of critically bottlenecked species. Front Ecol Evol. 10:1078058.pl_PL
dc.referencesHime PM, et al. 2021. Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Syst Biol. 70:49–66.pl_PL
dc.referencesHughes AL, Nei M. 1989. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci U S A. 86:958–962.pl_PL
dc.referencesJetz W, Pyron RA. 2018. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat Ecol Evol. 2:850–858.pl_PL
dc.referencesJoffre OP, Segura E, Savina A, Amigorena S. 2012. Cross-presentation by dendritic cells. Nat Rev Immunol. 12:557–569.pl_PL
dc.referencesKaufman J. 2018. Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol. 36:383–409.pl_PL
dc.referencesKaufman J, Milne S, Göbel T, Walker BA, Beck S. 1999. The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925.pl_PL
dc.referencesKaufman J, Salomonsen J, Flajnik M. 1994. Evolutionary conservation of MHC class I and class II molecules—different yet the same. Semin Immunol. 6:411–424.pl_PL
dc.referencesKiemnec-Tyburczy KM, Richmond JQ, Savage AE, Lips KR, Zamudio KR. 2012. Genetic diversity of MHC class I loci in six non-model frogs is shaped by positive selection and gene duplication. Heredity (Edinb). 109:146–155.pl_PL
dc.referencesKligman BT, et al. 2023. Triassic stem caecilian supports dissorophoid origin of living amphibians. Nature 614:102–107.pl_PL
dc.referencesKrasnec KV, Sharp AR, Williams TL, Miller RD. 2015. The opossum MHC genomic region revisited. Immunogenetics 67:259–264.pl_PL
dc.referencesKulski JK, Shiina T, Anzai T, Kohara S, Inoko H. 2002. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev. 190:95–122.pl_PL
dc.referencesLi C, Chen L, et al. 2019. A high-density BAC physical map covering the entire MHC region of addax antelope genome. BMC Genomics 20:479.pl_PL
dc.referencesLi Y, Ren Y, et al. 2019. Chromosome-level assembly of the mustache toad genome using third-generation DNA sequencing and Hi-C analysis. Gigascience 8:giz114.pl_PL
dc.referencesMalmstrøm M, et al. 2016. Evolution of the immune system influences speciation rates in teleost fishes. Nature Genet. 48:1204–1210.pl_PL
dc.referencesMarjanović D, Laurin M. 2014. An updated paleontological timetree of lissamphibians, with comments on the anatomy of Jurassic crown-group salamanders (Urodela). Hist Biol. 26:535–550.pl_PL
dc.referencesMayassi T, Barreiro LB, Rossjohn J, Jabri B. 2021. A multilayered immune system through the lens of unconventional T cells. Nature 595:501–510.pl_PL
dc.referencesMerker JD, et al. 2018. Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genet Med. 20:159–163.pl_PL
dc.referencesMiller HC, et al. 2015. Major histocompatibility complex genes map to two chromosomes in an evolutionarily ancient reptile, the tuatara Sphenodon punctatus. G3 5:1439–1451.pl_PL
dc.referencesMinias P, Palomar G, Dudek K, Babik W. 2022. Salamanders reveal novel trajectories of amphibian MHC evolution. Evolution 76:2436–2449.pl_PL
dc.referencesMinias P, Pikus E, Whittingham LA, Dunn PO. 2018. A global analysis of selection at the avian MHC. Evolution 72:1278–1293.pl_PL
dc.referencesMurphy K, Weaver C. 2016. Janeway's immunobiology: Garland Science.pl_PL
dc.referencesNakatani Y, et al. 2021. Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat Comm. 12:4489.pl_PL
dc.referencesNei M, Gu X, Sitnikova T. 1997. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A. 94:7799–7806.pl_PL
dc.referencesNowoshilow S, et al. 2018. The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55.pl_PL
dc.referencesOhta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF. 2006. Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol. 176:3674–3685.pl_PL
dc.referencesOhta Y, Kasahara M, O’Connor TD, Flajnik MF. 2019. Inferring the “primordial immune complex”: origins of MHC class I and antigen receptors revealed by comparative genomics. J Immunol. 203:1882–1896.pl_PL
dc.referencesPalomar G, Dudek K, Migalska M, et al. 2021. Coevolution between MHC class I and antigen-processing genes in salamanders. Mol Biol Evol. 38:5092–5106.pl_PL
dc.referencesPalomar G, Dudek K, Wielstra B, et al. 2021. Molecular evolution of antigen-processing genes in salamanders: do they coevolve with MHC class I genes? Genome Biol Evol. 13:evaa259.pl_PL
dc.referencesPlasil M, Futas J, Jelinek A, Burger PA, Horin P. 2022. Comparative genomics of the major histocompatibility complex (MHC) of felids. Front Genet. 13:829891.pl_PL
dc.referencesRadwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. 2020. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 36:298–311.pl_PL
dc.referencesReed KM, Settlage RE. 2021. Major histocompatibility complex genes and locus organization in the Komodo dragon (Varanus komodoensis). Immunogenetics 73:405–417.pl_PL
dc.referencesRhie A, et al. 2021. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592:737–746.pl_PL
dc.referencesRobert J, Edholm E-S. 2014. A prominent role for invariant T cells in the amphibian Xenopus laevis tadpoles. Immunogenetics 66:513–523.pl_PL
dc.referencesRobinson J, et al. 2020. IPD-IMGT/HLA database. Nucleic Acids Res. 48:D948–D955.pl_PL
dc.referencesRollins-Smith LA. 1998. Metamorphosis and the amphibian immune system. Immunol Rev. 166:221–230.pl_PL
dc.referencesSalomonsen J, et al. 2003. The properties of the single chicken MHC classical class II alpha chain (B-LA) gene indicate an ancient origin for the DR/E-like isotype of class II molecules. Immunogenetics 55:605–614.pl_PL
dc.referencesSammut B, et al. 1999. Axolotl MHC architecture and polymorphism. Eur J Immunol. 29:2897–2907.pl_PL
dc.referencesSchloissnig S, et al. 2021. The giant axolotl genome uncovers the evolution, scaling, and transcriptional control of complex gene loci. Proc Natl Acad Sci U S A. 118:e2017176118.pl_PL
dc.referencesSession AM, et al. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343.pl_PL
dc.referencesShiina T, Blancher A, Inoko H, Kulski JK. 2017. Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology 150:127–138.pl_PL
dc.referencesSiddle HV, et al. 2009. MHC-linked and un-linked class I genes in the wallaby. BMC Genom. 10:310.pl_PL
dc.referencesSiddle HV, et al. 2011. The tammar wallaby major histocompatibility complex shows evidence of past genomic instability. BMC Genom. 12:421.pl_PL
dc.referencesStamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.pl_PL
dc.referencesStar B, et al. 2011. The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210.pl_PL
dc.referencesSwann JB, Holland SJ, Petersen M, Pietsch TW, Boehm T. 2020. The immunogenetics of sexual parasitism. Science 369:1608–1615.pl_PL
dc.referencesVekemans X, et al. 2021. Whole-genome sequencing and genome regions of special interest: lessons from major histocompatibility complex, sex determination, and plant self-incompatibility. Mol Ecol. 30:6072–6086.pl_PL
dc.referencesVinogradov AE. 1999. Intron–genome size relationship on a large evolutionary scale. J Mol Evol. 49:376–384.pl_PL
dc.referencesWang B, Ekblom R, Bunikis I, Siitari H, Höglund J. 2014. Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution. BMC Genom. 15:180.pl_PL
dc.referencesWang B, Ekblom R, Strand TM, Portela-Bens S, Höglund J. 2012. Sequencing of the core MHC region of black grouse (Tetrao tetrix) and comparative genomics of the galliform MHC. BMC Genom. 13:553.pl_PL
dc.referencesWesterdahl H, et al. 2022. The genomic architecture of the passerine MHC region: high repeat content and contrasting evolutionary histories of single copy and tandemly duplicated MHC genes. Mol Ecol Res. 22:2379–2395.pl_PL
dc.referencesWickham H, et al. 2016. ggplot2: create elegant data visualisations using the grammar of graphics. R package v2. Available at https://github.com/tidyverse/ggplot2.pl_PL
dc.referencesuhki N, et al. 2003. Comparative genome organization of human, murine, and feline MHC class II region. Genome Res. 13:1169–1179.pl_PL
dc.referencesZhang Q, Edwards SV. 2012. The evolution of intron size in amniotes: a role for powered flight? Genome Biol Evol. 4:1033–1043.pl_PL
dc.referencesZhang W, Luo Z, Zhao M, Wu H. 2015. High genetic diversity in the endangered and narrowly distributed amphibian species Leptobrachium leishanense. Integr Zool. 10:465–481.pl_PL
dc.referencesZhou Y, et al. 2021. Platypus and echidna genomes reveal mammalian biology and evolution. Nature 592:756–762.pl_PL
dc.referencesZhu R, et al. 2014. Extensive diversification of MHC in Chinese giant salamanders Andrias davidianus (Anda-MHC) reveals novel splice variants. Dev Comp Immunol. 42:311–322.pl_PL
dc.contributor.authorEmailpminias@op.plpl_PL
dc.identifier.doi10.1093/gbe/evad079
dc.relation.volume15pl_PL
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe