Pokaż uproszczony rekord

dc.contributor.authorKolanowska, Marta
dc.date.accessioned2023-06-16T05:42:32Z
dc.date.available2023-06-16T05:42:32Z
dc.date.issued2023
dc.identifier.citationKolanowska, M. Loss of fungal symbionts and changes in pollinator availability caused by climate change will affect the distribution and survival chances of myco-heterotrophic orchid species. Sci Rep 13, 6848 (2023). https://doi.org/10.1038/s41598-023-33856-ypl_PL
dc.identifier.urihttp://hdl.handle.net/11089/47291
dc.description.abstractThe first comprehensive species distribution models for orchid, its fungal symbionts and pollinator are presented. To evaluate impact of global warming on these organisms three different projections and four various climate change scenarios were analysed. The niche modelling was based on presence-only records of Limodorum abortivum, two species of Russula and three insects pollinating orchid (Anthophora affinis, Bombus terrestris, Rhodanthidium septemdentatum). Two sets of orchid predictions were examined—the first one included only climatic data and the second one was based on climate data and data on future distribution of orchid fungal symbionts. Overall, a poleward range shift is predicted to occur as a result of climate change and apparently global warming will be favorable for L. abortivum and its potential geographical range will expand. However, due to the negative effect of global warming on fungal symbionts of L. abortivum, the actual extension of the suitable niches of the orchid will be much limited. Considering future possibility of cross-pollination, the availability of A. affinis for L. abortivum will decrease and this bee will be available in the worst case scenarios only for 21% of orchid populations. On the other hand, the overlap of orchid and the buff-tailed bumblebee will increase and as much as 86.5% of plant populations will be located within B. terrestris potential range. Also the availability of R. septemdentatum will be higher than currently observed in almost all analysed climate change projections. This study showed the importance of inclusion of ecological factors in species distribution models as the climate data itself are not enough to estimate the future distribution of plant species. Moreover, the availability of pollen vectors which is crucial for long-term survival of orchid populations should be analysed in context of climate changes.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesScientific Reports;13:6848
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBiodiversitypl_PL
dc.subjectClimate-change ecologypl_PL
dc.subjectClimate sciencespl_PL
dc.subjectConservation biologypl_PL
dc.subjectEcologypl_PL
dc.subjectPlant sciencespl_PL
dc.titleLoss of fungal symbionts and changes in pollinator availability caused by climate change will affect the distribution and survival chances of myco-heterotrophic orchid speciespl_PL
dc.typeArticlepl_PL
dc.page.number15pl_PL
dc.contributor.authorAffiliationDepartment of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90‑237 Lodzpl_PL
dc.identifier.eissn2045-2322
dc.referencesMantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta-analysis. Glob. Change Biol. 18, 1239–1252. https://doi.org/10.1111/j.1365-2486.2011.02593.x (2012).pl_PL
dc.referencesBrown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254. https://doi.org/10.1038/sdata.2018.254 (2018).pl_PL
dc.referencesFick, S. & Hijmans, R. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).pl_PL
dc.referencesVoldoire, A. et al. Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst. 11, 2177–2213. https://doi.org/10.1029/2019MS001683 (2019).pl_PL
dc.referencesWollan, A., Bakkestuen, V., Kauserud, H., Gulden, G. & Halvorsen, R. Modelling and predicting fungal distribution patterns using herbarium data. J. Biogeogr. 35, 2298–2310. https://doi.org/10.1111/j.1365-2699.2008.01965.x (2008).pl_PL
dc.referencesPierrat, B. et al. Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Mar. Ecol. Prog. Ser. 463, 215–230. https://doi.org/10.3354/meps09842 (2012).pl_PL
dc.referencesBrun, P. et al. Ecological niches of open ocean phytoplankton taxa. Limnol. Oceanogr. 60, 1020–1038. https://doi.org/10.1002/lno.10074 (2015).pl_PL
dc.referencesQuesada-Quiros, M., Acosta-Vargas, L., Arias-Aguilar, D. & Rodriguez-Gonzalez, A. Ecological niche modeling based on three climate change scenarios for five species of plants in high areas of Costa Rica. Revista Forestal Mesoamerica Kuru-Rfmk 14, 1–12. https://doi.org/10.18845/rfmk.v14i34.2991 (2017).pl_PL
dc.referencesSharifian, S., Kamrani, E. & Saeedi, H. Global future distributions of mangrove crabs in response to climate change. Wetlands https://doi.org/10.1007/s13157-021-01503-9 (2021).pl_PL
dc.referencesWang, P., Liu, Y., Chang, Y., Wang, N. & Zhang, Z. The role of niche divergence and geographic arrangement in the speciation of Eared Pheasants (Crossoptilon, Hodgson 1938). Mol. Phylogenet Evol. 113, 1–8. https://doi.org/10.1016/j.ympev.2017.05.003 (2017).pl_PL
dc.referencesCalixto-Rojas, M., Lira-Noriega, A., Rubio-Godoy, M., de Leon, G. & Pinacho-Pinacho, C. Phylogenetic relationships and ecological niche conservatism in killifish (Profundulidae) in Mesoamerica. J. Fish Biol. 99, 396–410. https://doi.org/10.1111/jfb.14727 (2021).pl_PL
dc.referencesPavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133. https://doi.org/10.1111/jbi.13987 (2021).pl_PL
dc.referencesFourcade, Y. Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2021.109686 (2021).pl_PL
dc.referencesBobrowski, M., Weidinger, J., Schwab, N. & Schickhoff, U. Searching for ecology in species distribution models in the Himalayas. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2021.109693 (2021).pl_PL
dc.referencesPrieto-Torres, D., Rosas, L., Figueroa, D. & Arizmendi, M. Most Mexican hummingbirds lose under climate and land-use change: Long-term conservation implications. Perspect. Ecol. Conserv. 19, 487–499. https://doi.org/10.1016/j.pecon.2021.07.001 (2021).pl_PL
dc.referencesMeyer, A. L., Pie, M. R. & Passos, F. C. Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. Am. J. Primatol. 76, 551–562. https://doi.org/10.1002/ajp.22247 (2014).pl_PL
dc.referencesFirn, J. et al. Priority threat management of invasive animals to protect biodiversity under climate change. Glob. Chang. Biol. 21, 3917–3930. https://doi.org/10.1111/gcb.13034 (2015).pl_PL
dc.referencesMagalhães-Júnior, A. J. C., Moura, G. J. B., Ribeiro, L. B. & Azevedo-Júnior, S. M. Potential distribution and conservation of the Colobosauroides carvalhoi Soares and Caramaschi, 1998: A rare and endemic lizard of Northeast Brazil. Braz. J. Biol. 77, 686–695. https://doi.org/10.1590/1519-6984.15815 (2017).pl_PL
dc.referencesLi, R. Protecting rare and endangered species under climate change on the Qinghai Plateau China. Ecol. Evol. 9, 427–436. https://doi.org/10.1002/ece3.4761 (2019).pl_PL
dc.referencesLovejoy, T. Climate change and biodiversity. Rev. Sci. Tech. 27, 331–338 (2008).pl_PL
dc.referencesFreimuth, J., Bossdorf, O., Scheepens, J. F. & Willems, F. M. Climate warming changes synchrony of plants and pollinators. bioRxiv 41, 425984. https://doi.org/10.1101/2021.01.10.425984 (2021).pl_PL
dc.referencesZhang, L., Takahashi, D., Hartvig, M. & Andersen, K. H. Food-web dynamics under climate change. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2017.1772 (2017).pl_PL
dc.referencesCribb, P. J., Kell, S. P., Dixon, K. W. & Barrett, R. L. in Orchid conservation (eds K. W. Dixon, S. P. Kell, R. L. Barrett, & P. J. Cribb) 1–24 (Natural History Publications, 2003).pl_PL
dc.referencesSwarts, N. D. & Dixon, K. W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 104, 543–556. https://doi.org/10.1093/aob/mcp025 (2009).pl_PL
dc.referencesLi, T., Yang, W., Wu, S., Selosse, M. A. & Gao, J. Progress and prospects of mycorrhizal fungal diversity in orchids. Front. Plant Sci. 12, 646325. https://doi.org/10.3389/fpls.2021.646325 (2021).pl_PL
dc.referencesDelaux, P.-M. et al. Algal ancestor of land plants was preadapted for symbiosis. Proc. Natl. Acad. Sci. 112, 13390–13395. https://doi.org/10.1073/pnas.1515426112 (2015).pl_PL
dc.referencesMiura, C. et al. The mycoheterotrophic symbiosis between orchids and mycorrhizal fungi possesses major components shared with mutualistic plant-mycorrhizal symbioses. Mol. Plant Microbe Interact 31, 1032–1047. https://doi.org/10.1094/MPMI-01-18-0029-R (2018).pl_PL
dc.referencesJersakova, J., Johnson, S. & Kindlmann, P. Mechanisms and evolution of deceptive pollination in orchids. Biol. Rev. 81, 219–235. https://doi.org/10.1017/S1464793105006986 (2006).pl_PL
dc.referencesVereecken, N. J. & Schiestl, F. P. The evolution of imperfect floral mimicry. Proc. Natl. Acad. Sci. U. S. A. 105, 7484–7488. https://doi.org/10.1073/pnas.0800194105 (2008).pl_PL
dc.referencesMicheneau, C. et al. Orthoptera, a new order of pollinator. Ann. Bot. 105, 355–364. https://doi.org/10.1093/aob/mcp299 (2010).pl_PL
dc.referencesSchiestl, F. P. & Schluter, P. M. Floral isolation, specialized pollination, and pollinator behavior in orchids. Annu. Rev. Entomol. 54, 425–446. https://doi.org/10.1146/annurev.ento.54.110807.090603 (2009).pl_PL
dc.referencesTremblay, R., Ackerman, J., Zimmerman, J. & Calvo, R. Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification. Biol. J. Lin. Soc. 84, 1–54. https://doi.org/10.1111/j.1095-8312.2004.00400.x (2005).pl_PL
dc.referencesWang, Q. et al. A novel case of autogamy and cleistogamy in Dendrobium wangliangii: A rare orchid distributed in the dry-hot valley. Ecol. Evol. 9, 12906–12914. https://doi.org/10.1002/ece3.5772 (2019).pl_PL
dc.referencesLiu, K. W. et al. Pollination: Self-fertilization strategy in an orchid. Nature 441, 945–946. https://doi.org/10.1038/441945a (2006).pl_PL
dc.referencesGirlanda, M. et al. Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol. Ecol. 15, 491–504. https://doi.org/10.1111/j.1365-294X.2005.02770.x (2006).pl_PL
dc.referencesWood, J. Limodorum abortivum (Orchidaceae). Kew Mag. 10, 161–166 (1993).pl_PL
dc.referencesClaessens, J. & Kleynen, J. The pollination of European Orchids Part 3: Limodorum and Epipactis. J. Hardy Orchid Soc. 11, 64–72 (2014).pl_PL
dc.referencesRankou, H. Limodorum abortivum (Europe assessment). IUCN Red List Threat. Species 2011, 2022 (2011).pl_PL
dc.referencesHolub, J. & Procházká, F. Red list of vascular plants of the Czech Republic - 2000. Preslia 72, 187–230 (2000).pl_PL
dc.referencesLudwig, G. & Schnittler, M. Rote Liste gefährdeter Pflanzen Deutschlands. Schriftenreihe für Vegetationskunde 28, 709–739 (1996).pl_PL
dc.referencesWitkowski, Z. J., Król, W. & Solarz, W. (2003) Carpathian list of endangered species. 68 (WWF and Institute of Nature Conservation, Polish Academy of Sciences, London).pl_PL
dc.referencesPetrova, A. & Vladimirov, V. Red list of Bulgarian vascular plants. Phytologia Balcanica 15, 63–94 (2009).pl_PL
dc.referencesKirály, G. Red list of the vascular flora of Hungary (Saját kiadás, 2007).pl_PL
dc.referencesMoser, D., Gygax, A., Bäumler, B., Wyler, N. & Raoul, P. Rote Liste der gefährdeten Arten der Schweiz: Farn- und Blütenpflanzen (BUWAL, 2002).pl_PL
dc.referencesMendes, P., Velazco, S., de Andrade, A. & De Marco, P. Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2020.109180 (2020).pl_PL
dc.referencesBarve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011 (2011).pl_PL
dc.referencesBrown, J. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700. https://doi.org/10.1111/2041-210X.12200 (2014).pl_PL
dc.referencesBrown, J. L., Bennett, J. R. & French, C. M. SDMtoolbox 20: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e4095. https://doi.org/10.7717/peerj.4095 (2017).pl_PL
dc.referencesKramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379. https://doi.org/10.1111/ddi.12096 (2013).pl_PL
dc.referencesVeloz, S. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36, 2290–2299. https://doi.org/10.1111/j.1365-2699.2009.02174.x (2009).pl_PL
dc.referencesTourne, D. C. M. et al. Strategies to optimize modeling habitat suitability of Bertholletia excelsa in the Pan-Amazonia. Ecol. Evol. 9, 12623–12638. https://doi.org/10.1002/ece3.5726 (2019).pl_PL
dc.referencesCastellanos, A., Huntley, J., Voelker, G. & Lawing, A. Environmental filtering improves ecological niche models across multiple scales. Methods Ecol. Evol. 10, 481–492. https://doi.org/10.1111/2041-210X.13142 (2019).pl_PL
dc.referencesLuoto, M. & Heikkinen, R. K. Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob. Change Biol. 14, 483–494. https://doi.org/10.1111/j.1365-2486.2007.01527.x (2008).pl_PL
dc.referencesBabar, S., Amarnath, G., Reddy, C., Jentsch, A. & Sudhakar, S. Species distribution models: Ecological explanation and prediction of an endemic and endangered plant species (Pterocarpus santalinus L.f.). Current Sci. 102, 1157–1165 (2012).pl_PL
dc.referencesElith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).pl_PL
dc.referencesElith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).pl_PL
dc.referencesGrimmett, L., Whitsed, R. & Horta, A. Presence-only species distribution models are sensitive to sample prevalence: Evaluating models using spatial prediction stability and accuracy metrics. Ecol. Modell. 431, 109194. https://doi.org/10.1016/j.ecolmodel.2020.109194 (2020).pl_PL
dc.referencesGuillera-Arroita, G. et al. Maxent is not a presence–absence method: A comment on Thibaud. Methods Ecol. Evol. 5, 1192–1197. https://doi.org/10.1111/2041-210X.12252 (2014).pl_PL
dc.referencesRiahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change-Human Policy Dimens. 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009 (2017).pl_PL
dc.referencesvan Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Chang. 42, 237–250. https://doi.org/10.1016/j.gloenvcha.2016.05.008 (2017).pl_PL
dc.referencesvan Vuuren, D. et al. The shared socio-economic pathways: Trajectories for human development and global environmental change. Global Environ. Change-Human Policy Dimens. 42, 148–152. https://doi.org/10.1016/j.gloenvcha.2016.10.009 (2017).pl_PL
dc.referencesParding, K. M. et al. GCMeval – An interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 18, 100167. https://doi.org/10.1016/j.cliser.2020.100167 (2020).pl_PL
dc.referencesOwens, H. et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Model. 263, 10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011 (2013).pl_PL
dc.referencesTobena, M., Prieto, R., Machete, M. & Silva, M. Modeling the potential distribution and richness of cetaceans in the Azores from fisheries observer program data. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00202 (2016).pl_PL
dc.referencesPhillips, S., Anderson, R. & Schapire, R. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).pl_PL
dc.referencesMason, S. & Graham, N. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128, 2145–2166. https://doi.org/10.1256/003590002320603584 (2002).pl_PL
dc.referencesČengić, M. et al. On the importance of predictor choice, modelling technique, and number of pseudo-absences for bioclimatic envelope model performance. Ecol. Evol. 10, 12307–12317. https://doi.org/10.1002/ece3.6859 (2020).pl_PL
dc.referencesShabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986. https://doi.org/10.1002/ece3.2332 (2016).pl_PL
dc.referencesPhyloclim: Integrating phylogenetics and climatic niche modeling (R package version 0.9–4 2013).pl_PL
dc.referencesStöckel, M., Těšitelová, T., Jersáková, J., Bidartondo, M. I. & Gebauer, G. Carbon and nitrogen gain during the growth of orchid seedlings in nature. New Phytol. 202, 606–615. https://doi.org/10.1111/nph.12688 (2014).pl_PL
dc.referencesTsukaya, H. How leaves of mycoheterotrophic plants evolved – from the view point of a developmental biologist. New Phytol. 217, 1401–1406. https://doi.org/10.1111/nph.14994 (2018).pl_PL
dc.referencesShevtsov, S. et al. The complete plastid genome sequence and the photosynthetic activity of the putative mycoheterotrophic orchid Limodorum abortivum. Israel J. Plant Sci. 66, 69–88. https://doi.org/10.1163/22238980-00001075 (2019).pl_PL
dc.referencesFavre-Godal, Q., Gourguillon, L., Lordel-Madeleine, S., Gindro, K. & Choisy, P. Orchids and their mycorrhizal fungi: An insufficiently explored relationship. Mycorrhiza 30, 5–22. https://doi.org/10.1007/s00572-020-00934-2 (2020).pl_PL
dc.referencesMa, X., Kang, J., Nontachaiyapoom, S., Wen, T. & Hyde, K. Non-mycorrhizal endophytic fungi from orchids. Curr. Sci. 109, 72–87 (2015).pl_PL
dc.referencesSarsaiya, S., Shi, J. & Chen, J. A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: Current research, challenges, and future possibilities. Bioengineered 10, 316–334. https://doi.org/10.1080/21655979.2019.1644854 (2019).pl_PL
dc.referencesAdeleke, B. S. & Babalola, O. O. The plant endosphere-hidden treasures: A review of fungal endophytes. Biotechnol. Genet. Eng. Rev. 37, 154–177. https://doi.org/10.1080/02648725.2021.1991714 (2021).pl_PL
dc.referencesKhalil, A. M. A., Abdelaziz, A. M., Khaleil, M. M. & Hashem, A. H. Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Lett. Appl. Microbiol. 72, 263–274. https://doi.org/10.1111/lam.13414 (2021).pl_PL
dc.referencesKristiansen, K. A., Freudenstein, J. V., Rasmussen, F. N. & Rasmussen, H. N. Molecular identification of mycorrhizal fungi in Neuwiedia veratrifolia (Orchidaceae). Mol. Phylogenet. Evol. 33, 251–258. https://doi.org/10.1016/j.ympev.2004.05.015 (2004).pl_PL
dc.referencesJacquemyn, H., Brys, R., Cammue, B. P., Honnay, O. & Lievens, B. Mycorrhizal associations and reproductive isolation in three closely related Orchis species. Ann. Bot. 107, 347–356. https://doi.org/10.1093/aob/mcq248 (2011).pl_PL
dc.referencesChen, J., Wang, H. & Guo, S. X. Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). Mycorrhiza 22, 297–307. https://doi.org/10.1007/s00572-011-0404-0 (2012).pl_PL
dc.referencesFernández di Pardo, A. et al. Mycorrhizal fungi isolated from native terrestrial orchids of pristine regions in Cordoba (Argentina). Rev. Biol. Trop. 63, 275–283. https://doi.org/10.15517/rbt.v63i1.14226 (2015).pl_PL
dc.referencesLegon, N. W., Henrici, A. (RBG Kew, 2022).pl_PL
dc.referencesAdamčík, S., Ripková, S. & Zaliberová, M. Diversity of Russulaceae in the Vihorlatské vrchy Mts. (Slovakia). Czech Mycol. 58, 43–66 (2006).pl_PL
dc.referencesRog, I., Rosenstock, N. P., Körner, C. & Klein, T. Share the wealth: Trees with greater ectomycorrhizal species overlap share more carbon. Mol. Ecol. 29, 2321–2333. https://doi.org/10.1111/mec.15351 (2020).pl_PL
dc.referencesZhang, S. & Chen, J. Uncertainty in projection of climate extremes: A comparison of CMIP5 and CMIP6. J. Meteorol. Res. 35, 646–662. https://doi.org/10.1007/s13351-021-1012-3 (2021).pl_PL
dc.referencesKolanowska, M. et al. Global warming not so harmful for all plants - response of holomycotrophic orchid species for the future climate change. Sci. Rep. 7, 12704. https://doi.org/10.1038/s41598-017-13088-7 (2017).pl_PL
dc.referencesCavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. U. S. A. 111, 723–727. https://doi.org/10.1073/pnas.1315800111 (2014).pl_PL
dc.referencesPélissié, M., Johansson, F. & Hyseni, C. Pushed northward by climate change: Range shifts with a chance of co-occurrence reshuffling in the forecast for northern European odonates. Environ. Entomol. 51, 910–921. https://doi.org/10.1093/ee/nvac056 (2022).pl_PL
dc.referencesHickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12, 450–455. https://doi.org/10.1111/j.1365-2486.2006.01116.x (2006).pl_PL
dc.referencesEvans, A. & Jacquemyn, H. Range size and niche breadth as predictors of climate-induced habitat change in Epipactis (Orchidaceae). Front. Ecol. Evol. 10, 78963 (2022).pl_PL
dc.referencesKolanowska, M., Rewicz, A. & Nowak, S. Significant habitat loss of the black vanilla orchid (Nigritella nigra sl, Orchidaceae) and shifts in its pollinators availability as results of global warming. Global Ecol. Conserv. 27, e01560. https://doi.org/10.1016/j.gecco.2021.e01560 (2021).pl_PL
dc.referencesKolanowska, M., Nowak, S. & Rewicz, A. Will Greenland be the last refuge for the continental European small-white orchid?Niche modeling of future distribution of Pseudorchis albida. Front. Environ. Sci. https://doi.org/10.3389/fevo.2022.894616 (2022).pl_PL
dc.referencesEvans, A., Janssens, S. & Jacquemyn, H. Impact of climate change on the distribution of four closely related Orchis (Orchidaceae) species. Divers. Basel https://doi.org/10.3390/d12080312 (2020).pl_PL
dc.referencesCharitonidou, M., Kougioumoutzis, K., Karypidou, M. C. & Halley, J. M. Fly to a safer north: Distributional shifts of the orchid Ophrys insectifera L. due to climate change. Biology 11, 497 (2022).pl_PL
dc.referencesWang, Q. et al. Effects of topography on structuring species assemblages in a subtropical forest. J. Plant Ecol. 10, 440–449. https://doi.org/10.1093/jpe/rtw047 (2017).pl_PL
dc.referencesIwara, A. I., Gani, B. S., Njar, G. N. & Deekor, T. N. Influence of soil physico-chemical properties on the distribution of woody tree/shrub species in south-southern Nigeria. J. Agric. Sci. 2, 69–75. https://doi.org/10.1080/09766898.2011.11884669 (2011).pl_PL
dc.referencesJohn, R. et al. Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl. Acad. Sci. 104, 864–869. https://doi.org/10.1073/pnas.0604666104 (2007).pl_PL
dc.referencesChauvier, Y. et al. Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecol. Monogr. 91, e01433. https://doi.org/10.1002/ecm.1433 (2021).pl_PL
dc.referencesNardini, A., Andri, S. & Crasso, M. Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs: Shrubs versus herbaceous plants. Urban Ecosyst. 15, 697–708. https://doi.org/10.1007/s11252-011-0220-5 (2012).pl_PL
dc.referencesZhang, Q.-P., Wang, J. & Wang, Q. Effects of abiotic factors on plant diversity and species distribution of alpine meadow plants. Ecol. Inf. 61, 101210. https://doi.org/10.1016/j.ecoinf.2021.101210 (2021).pl_PL
dc.referencesLobo, J. M. & Tognelli, M. F. Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. J. Nat. Conserv. 19, 1–7. https://doi.org/10.1016/j.jnc.2010.03.002 (2011).pl_PL
dc.referencesInman, R., Franklin, J., Esque, T. & Nussear, K. Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere 12, 03422. https://doi.org/10.1002/ecs2.3422 (2021).pl_PL
dc.referencesBird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Cons. 173, 144–154. https://doi.org/10.1016/j.biocon.2013.07.037 (2014).pl_PL
dc.referencesStolar, J. & Nielsen, S. Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers. Distrib. 21, 595–608. https://doi.org/10.1111/ddi.12279 (2015).pl_PL
dc.referencesDubos, N. et al. Assessing the effect of sample bias correction in species distribution models. Ecol. Indic. 145, 109487. https://doi.org/10.1016/j.ecolind.2022.109487 (2022).pl_PL
dc.referencesAraújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 11, 1504–1513. https://doi.org/10.1111/j.1365-2486.2005.01000.x (2005).pl_PL
dc.referencesKolanowska, M. & Jakubska-Busse, A. Is the lady’s-slipper orchid (Cypripedium calceolus) likely to shortly become extinct in Europe?-Insights based on ecological niche modelling. PLoS ONE 15, e0228420. https://doi.org/10.1371/journal.pone.0228420 (2020).pl_PL
dc.referencesKolanowska, M. The future of a montane orchid species and the impact of climate change on the distribution of its pollinators and magnet species. Global Ecol. Conserv. https://doi.org/10.1016/j.gecco.2021.e01939 (2021).pl_PL
dc.referencesKolanowska, M., Michalska, E. & Konowalik, K. The impact of global warming on the niches and pollinator availability of sexually deceptive orchid with a single pollen vector. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.148850 (2021).pl_PL
dc.referencesSlominski, A. H. & Burkle, L. A. Solitary bee life history traits and sex mediate responses to manipulated seasonal temperatures and season length. Front. Ecol. Evol. 7, 314 (2019).pl_PL
dc.referencesO’Neill, K. M., Delphia, C. M. & O’Neill, R. P. Oocyte size, egg index, and body lipid content in relation to body size in the solitary bee Megachile rotundata. PeerJ 2, 314. https://doi.org/10.7717/peerj.314 (2014).pl_PL
dc.referencesSgolastra, F. et al. The long summer: Pre-wintering temperatures affect metabolic expenditure and winter survival in a solitary bee. J. Insect. Physiol. 57, 1651–1659. https://doi.org/10.1016/j.jinsphys.2011.08.017 (2011).pl_PL
dc.referencesSchenk, M., Mitesser, O., Hovestadt, T. & Holzschuh, A. Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees. PeerJ 6, e4721. https://doi.org/10.7717/peerj.4721 (2018).pl_PL
dc.referencesBosch, J. & Kemp, W. P. Effect of wintering duration and temperature on survival and emergence time in males of the orchard pollinator Osmia lignaria (Hymenoptera: Megachilidae). Environ. Entomol. 32, 711–716. https://doi.org/10.1603/0046-225X-32.4.711 (2003).pl_PL
dc.referencesForrest, J. R. K. & Thomson, J. D. An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecol. Monogr. 81, 469–491. https://doi.org/10.1890/10-1885.1 (2011).pl_PL
dc.referencesBosch, J., Sgolastra, F. & Kemp, W. P. Timing of eclosion affects diapause development, fat body consumption and longevity in Osmia lignaria, a univoltine, adult-wintering solitary bee. J. Insect. Physiol. 56, 1949–1957. https://doi.org/10.1016/j.jinsphys.2010.08.017 (2010).pl_PL
dc.referencesPawlikowski, T. et al. Rising temperatures advance the main flight period of Bombus bumblebees in agricultural landscapes of the Central European Plain. Apidologie 51, 652–663. https://doi.org/10.1007/s13592-020-00750-9 (2020).pl_PL
dc.referencesPhillips, R. D. et al. Mismatch in the distribution of floral ecotypes and pollinators: Insights into the evolution of sexually deceptive orchids. J. Evol. Biol. 28, 601–612. https://doi.org/10.1111/jeb.12593 (2015).pl_PL
dc.referencesHutchings, M. J., Robbirt, K. M., Roberts, D. L. & Davy, A. J. Vulnerability of a specialized pollination mechanism to climate change revealed by a 356-year analysis. Bot. J. Linn. Soc. 186, 498–509. https://doi.org/10.1093/botlinnean/box086 (2018).pl_PL
dc.contributor.authorEmailmartakolanowska@wp.plpl_PL
dc.identifier.doi10.1038/s41598-023-33856-y
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe