Show simple item record

dc.contributor.authorStelmaszczyk, Paweł
dc.contributor.authorKwaczyński, Karolina
dc.contributor.authorRudnicki, Konrad
dc.contributor.authorSkrzypek, Slawomira
dc.contributor.authorWietecha-Posłuszny, Renata
dc.contributor.authorPółtorak, Łukasz
dc.date.accessioned2023-08-01T17:17:33Z
dc.date.available2023-08-01T17:17:33Z
dc.date.issued2023
dc.identifier.citationStelmaszczyk, P., Kwaczyński, K., Rudnicki, K. et al. Nitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interface. Microchim Acta 190, 182 (2023). https://doi.org/10.1007/s00604-023-05739-6pl_PL
dc.identifier.issn0026-3672
dc.identifier.urihttp://hdl.handle.net/11089/47741
dc.description.abstractTwo benzodiazepine type drugs, that is, nitrazepam and 7-aminonitrazepam, were studied at the electrified liquid-liquid interface (eLLI). Both drugs are illicit and act sedative in the human body and moreover are used as date rape drugs. Existence of the diazepine ring in the concerned chemicals structure and one additional amine group (for 7-aminonitrazepam) allows for the molecular charging below their pKa values, and hence, both drugs can cross the eLLI interface upon application of the appropriate value of the Galvani potential difference. Chosen molecules were studied at the macroscopic eLLI formed in the four electrode cell and microscopic eLLI formed within a microtip defined as the single pore having 25 μm in diameter. Microscopic eLLI was formed using only a few μL of the organic and the aqueous phase with the help of a 3D printed cell. Parameters such as limit of detection and voltammetric detection sensitivity are derived from the experimental data. Developed methodology was used to detect nitrazepam in pharmaceutical formulation and both drugs (nitrazepam and 7-aminonitrazepam) in spiked biological fluids (urine and blood).pl_PL
dc.description.sponsorshipR. Wietecha-Posłuszny and P. Stelmaszczyk are grateful for the financial support (National Science Centre, Grant no. UMO-2019/35/O/ST4/00978: application of developed extraction procedure, study the interfacial behavior of NIT and 7a-NIT), so is L. Poltorak (National Science Centre, Grant no. UMO-2018/31/D/ST4/03259: application of designed fused silica capillary and 3D printed cell for NIT and 7a-NIT detection).pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesMicrochimica Acta;190:182
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDate rape drugspl_PL
dc.subjectPsychoactive chemicalspl_PL
dc.subjectVoltammetrypl_PL
dc.subjectITIESpl_PL
dc.subjectElectrochemical sensorpl_PL
dc.titleNitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interfacepl_PL
dc.typeArticlepl_PL
dc.page.number1-16pl_PL
dc.contributor.authorAffiliationLaboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Polandpl_PL
dc.contributor.authorAffiliationElectrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Polandpl_PL
dc.contributor.authorAffiliationElectrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Polandpl_PL
dc.contributor.authorAffiliationElectrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Polandpl_PL
dc.contributor.authorAffiliationLaboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Polandpl_PL
dc.contributor.authorAffiliationElectrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Polandpl_PL
dc.identifier.eissn1436-5073
dc.referencesSoni A, Thiyagarajan A, Reeve J (2022) Feasibility and efectiveness of deprescribing benzodiazepines and Z-drugs: systematic review and meta-analysis. Addiction 118:1–10. https://doi.org/ 10.1111/add.15997pl_PL
dc.referencesBaldwin DS, Aitchison K, Bateson A, Curran HV, Davies S, Leonard B, Nutt DJ, Stephens DN, Wilson S (2013) Benzodiazepines: risks and benefits. A reconsideration. J. Psychopharmacol 27:967–971. https://doi.org/10.1177/0269881113503509pl_PL
dc.referencesMcAuley A, Matheson C, Robertson JR (2022) From the clinic to the street: the changing role of benzodiazepines in the Scottish overdose epidemic. Int. J. Drug Policy 100:103512. https://doi.org/10.1016/j.drugpo.2021.103512pl_PL
dc.referencesGrela A, Gautam L, Cole MD (2018) A multifactorial critical appraisal of substances found in drug facilitated sexual assault cases. Forensic Sci. Int 292:50–60. https://doi.org/10.1016/j.forsciint.2018.08.034pl_PL
dc.referencesStelmaszczyk P, Gacek E, Wietecha-Posłuszny R (2021) Optimized and validated DBS / MAE / LC – MS method for rapid determination of date-rape drugs and cocaine in human blood samples — a new tool in forensic analysis. Separations 8(12):249. https://doi.org/10.3390/separations8120249pl_PL
dc.referencesWietecha-Posłuszny R, Lendor S, Garnysz M, Zawadzki M, Kościelniak P (2017) Human bone marrow as a tissue in post-mortem identification and determination of psychoactive substances—screening methodology, J. Chromatogr. B Anal. Technol. Biomed. Life Sci 1061:459–467. https://doi.org/10.1016/j.jchromb.2017.08.006pl_PL
dc.referencesMajda A, Mrochem K, Wietecha-Posłuszny R, Zapotoczny S, Zawadzki M (2020) Fast and efficient analyses of the post-mortem human blood and bone marrow using DI-SPME/LC-TOFMS method for forensic medicine purposes. Talanta 209:120533. https://doi.org/10.1016/j.talanta.2019.120533pl_PL
dc.referencesArantes ACF, da Cunha KF, Cardoso MS, Oliveira KD, Costa JL (2021) Development and validation of quantitative analytical method for 50 drugs of antidepressants, benzodiazepines and opioids in oral fluid samples by liquid chromatography–tandem mass spectrometry. Forensic Toxicol 39:179–197. https://doi.org/10.1007/s11419-020-00561-8pl_PL
dc.referencesHeidari H, Sadi S (2022) Hydrophobic deep eutectic solvent-based microextraction method for the simultaneous extraction of two benzodiazepines from saliva samples before determination by 96-well microplates-based spectrophotometer with the aid of chemometrics. Sep Sci Plus 5:520–528. https://doi.org/10.1002/sscp.202200060pl_PL
dc.referencesHadi H (2021) A new charge transfer reaction for spectrophotometric determination of nitrazepam using reverse flow injection analysis. J Anal Chem 76:452–458. https://doi.org/10.1134/S1061934821040043pl_PL
dc.referencesZanfrognini B, Pigani L, Zanardi C (2020) Recent advances in the direct electrochemical detection of drugs of abuse. J Solid State Electrochem 24:2603–2616. https://doi.org/10.1007/s10008-020-04686-zpl_PL
dc.referencesBilge S, Dogan-Topal B, Gürbüz MM, Yücel A, Sınağ A, Ozkan SA (2022) Recent advances in electrochemical sensing of cocaine: a review. TrAC - Trends Anal Chem 157. https://doi.org/10.1016/j.trac.2022.116768pl_PL
dc.referencesDe Rycke E, Stove C, Dubruel P, De Saeger S, Beloglazova N (2020) Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens Bioelectron 169:112579. https://doi.org/10.1016/j.bios.2020.112579pl_PL
dc.referencesPoltorak L, Sudhölter EJR, de Puit M (2019) Electrochemical cocaine (bio)sensing. From solid electrodes to soft junctions. TrAC - Trends Anal Chem 114:48–55. https://doi.org/10.1016/j.trac.2019.02.025pl_PL
dc.referencesDe Jong M, Florea A, Eliaerts J, Van Durme F, Samyn N, De Wael K (2018) Tackling poor specificity of cocaine color tests by electrochemical strategies. Anal Chem 90:6811–6819. https://doi.org/10.1021/acs.analchem.8b00876pl_PL
dc.referencesDe Jong M, Florea A, De Vries AM, Van Nuijs ALN, Covaci A, Van Durme F, Martins JC, Samyn N, De Wael K (2018) Levamisole: a common adulterant in cocaine street samples hindering electrochemical detection of cocaine. Anal Chem 90:5290–5297. https://doi.org/10.1021/acs.analchem.8b00204pl_PL
dc.referencesFlorea A, Cowen T, Piletsky S, De Wael K (2018) Polymer platforms for selective detection of cocaine in street samples adulterated with levamisole. Talanta 186:362–367. https://doi.org/10.1016/j.talanta.2018.04.061pl_PL
dc.referencesBorgul P, Sobczak K, Sipa K, Rudnicki K, Skrzypek S, Trynda A, Poltorak L (2022) Heroin detection in a droplet hosted in a 3D printed support at the miniaturized electrified liquid-Liquid interface. SSRN Electron J 12:1–11. https://doi.org/10.2139/ssrn.4137984pl_PL
dc.referencesFlorea A, Schram J, De Jong M, Eliaerts J, Van Durme F, Kaur B, Samyn N, De Wael K (2019) Electrochemical strategies for adulterated heroin samples. Anal Chem 91:7920–7928. https://doi.org/10.1021/acs.analchem.9b01796pl_PL
dc.referencesZhou H, Wu D, Cai W (2022) Carbon nanotubes coated with hybrid nanocarbon layers for electrochemical sensing of psychoactive drug. Electrochim Acta 430:141001. https://doi.org/10.1016/j.electacta.2022.141001pl_PL
dc.referencesSchram J, Parrilla M, Slosse A, Van Durme F, Åberg J, Björk K, Bijvoets SM, Sap S, Heerschop MWJ, De Wael K (2022) Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples. Microchem J 179:107518. https://doi.org/10.1016/j.microc.2022.107518pl_PL
dc.referencesFelipe Montiel N, Parrilla M, Sleegers N, Van Durme F, van Nuijs ALN, De Wael K (2022) Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs. SSRN Electron J 436:141446. https://doi.org/10.2139/ssrn.4219018pl_PL
dc.referencesBartlett CA, Taylor S, Fernandez C, Wanklyn C, Burton D, Enston E, Raniczkowska A, Black M, Murphy L (2016) Disposable screen printed sensor for the electrochemical detection of methamphetamine in undiluted saliva. Chem Cent J 10:1–9. https://doi.org/10.1186/s13065-016-0147-2pl_PL
dc.referencesGoodchild SA, Hubble LJ, Mishra RK, Li Z, Goud KY, Barfidokht A, Shah R, Bagot KS, McIntosh AJS, Wang J (2019) Ionic liquid-modified disposable electrochemical sensor strip for analysis of fentanyl. Anal Chem 91:3747–3753. https://doi.org/10.1021/acs.analchem.9b00176pl_PL
dc.referencesMishra RK, Goud KY, Li Z, Moonla C, Mohamed MA, Tehrani F, Teymourian H, Wang J (2020) Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J Am Chem Soc 142:5991–5995. https://doi.org/10.1021/jacs.0c01883pl_PL
dc.referencesKlimuntowski M, Alam MM, Singh G, Howlader MMR (2020) Electrochemical sensing of cannabinoids in biofluids: a noninvasive tool for drug detection. ACS Sensors 5:620–636. https://doi.org/10.1021/acssensors.9b02390pl_PL
dc.referencesRenaud-Young M, Mayall RM, Salehi V, Goledzinowski M, Comeau FJE, MacCallum JL, Birss VI (2019) Development of an ultra-sensitive electrochemical sensor for Δ9-tetrahydrocannabinol (THC) and its metabolites using carbon paper electrodes. Electrochim Acta 307:351–359. https://doi.org/10.1016/j.electacta.2019.02.117pl_PL
dc.referencesde Araujo WR, Cardoso TMG, da Rocha RG, Santana MHP, Munoz RA, Richter EM, Paixao TR, Coltro WK (2018) Portable analytical platforms for forensic chemistry: a review. Anal Chim Acta 1034:1–21. https://doi.org/10.1016/j.aca.2018.06.014pl_PL
dc.referencesSlepchenko GB, Gindullina TM, Nekhoroshev SV (2017) Capabilities of the electrochemical methods in the determination of narcotic and psychotropic drugs in forensic chemistry materials. J Anal Chem 72:703–709. https://doi.org/10.1134/S1061934817070127pl_PL
dc.referencesTeymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R, De Wael K, Wang J (2020) Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sensors 5:2679–2700. https://doi.org/10.1021/acssensors.0c01318pl_PL
dc.referencesGrothe RA, Lobato A, Mounssef B, Tasić N, Braga AAC, Maldaner AO, Aldous L, Paixão TRLC, Gonçalves LM (2021) Electroanalytical profiling of cocaine samples by means of an electropolymerized molecularly imprinted polymer using benzocaine as the template molecule. Analyst 146:1747–1759. https://doi.org/10.1039/D0AN02274Hpl_PL
dc.referencesGarrido JMPJ, Borges F, Brett CM, Garrido EM (2016) Carbon nanotube β-cyclodextrin-modified electrode for quantification of cocaine in seized street samples. Ionics (Kiel) 22:2511–2518. https://doi.org/10.1007/s11581-016-1765-3pl_PL
dc.referencesBaker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128:3138–3139. https://doi.org/10.1021/ja056957ppl_PL
dc.referencesTang D, Tang J, Li Q, Su B, Chen G (2011) Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I. Anal Chem 83:7255–7259. https://doi.org/10.1021/ac201891wpl_PL
dc.referencesRoushani M, Shahdost-Fard F (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sensors Actuators, B Chem 207:764–771. https://doi.org/10.1016/j.snb.2014.10.131pl_PL
dc.referencesWhite RJ, Phares N, Lubin AA, Xiao Y, Plaxco KW (2008) Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir 24:10513–10518. https://doi.org/10.1021/la800801vpl_PL
dc.referencesShi Y, Dai H, Sun Y, Hu J, Ni P, Li Z (2013) Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide. Analyst 138:7152. https://doi.org/10.1039/c3an00897epl_PL
dc.referencesSamec Z, Langmaier J, Kakiuchi T (2009) Charge-transfer processes at the interface between hydrophobic ionic liquid and water. Pure Appl Chem 81:1473–1488. https://doi.org/10.1351/PAC-CON-08-08-36pl_PL
dc.referencesArrigan DWM (2013) Voltammetry of proteins at liquid–liquid interfaces. Annu. Reports Sect. “C” Phys Chem 109:167. https://doi.org/10.1039/c3pc90007jpl_PL
dc.referencesGirault HH (1993) Charge transfer across liquid-liquid interfaces. Mod Asp Electrochem 25:1–62pl_PL
dc.referencesLiu B, Mirkin MV (2000) Electrochemistry at microscopic liquid - liquid interfaces. Electroanalysis 12:1433–1446pl_PL
dc.referencesScanlon MD, Smirnov E, Stockmann TJ, Peljo P (2018) Gold nanofilms at liquid−liquid interfaces: an emerging platform for redox electrocatalysis, nanoplasmonic sensors, and electrovariable optics. Chem Rev 118:3722–3751. https://doi.org/10.1021/acs.chemrev.7b00595pl_PL
dc.referencesLiu S, Li Q, Shao Y (2011) Electrochemistry at micro- and nanoscopic liquid/liquid interfaces. Chem Soc Rev 40:2236–2253. https://doi.org/10.1039/c0cs00168fpl_PL
dc.referencesQian Q, Wilson GS, Bowman-James K, Girault HH (2001) MicroITIES detection of nitrate by facilitated ion transfer. Anal Chem 73:497–503. https://doi.org/10.1021/ac000806hpl_PL
dc.referencesFaisal SN, Pereira CM, Rho S, Lee HJ (2010) Amperometric proton selective sensors utilizing ion transfer reactions across a microhole liquid/gel interface. Phys Chem Chem Phys 12:15184–15189. https://doi.org/10.1039/c0cp00750apl_PL
dc.referencesLee HJ, Lagger G, Pereira CM, Silva AF, Girault HH (2009) Amperometric tape ion sensors for cadmium(II) ion analysis. Talanta 78:66–70. https://doi.org/10.1016/j.talanta.2008.10.059pl_PL
dc.referencesKim HR, Pereira CM, Han HY, Lee HJ (2015) Voltammetric studies of topotecan transfer across liquid/liquid interfaces and sensing applications. Anal Chem 87:5356–5362. https://doi.org/10.1021/acs.analchem.5b00653pl_PL
dc.referencesLaborda E, Molina A (2021) Impact experiments at the interface between two immiscible electrolyte solutions (ITIES). Curr Opin Electrochem 26:100664. https://doi.org/10.1016/j.coelec.2020.100664pl_PL
dc.referencesStockmann TJ, Angel L, Brasiliense V, Combellas C, Kanoufi F (2017) Platinum nanoparticle impacts at a liquid/liquid interface. Angew Chemie Int Ed 56:13493–13497. https://doi.org/10.1002/anie.201707589pl_PL
dc.referencesBorgul P, Pawlak P, Rudnicki K, Sipa K, Krzyczmonik P, Trynda A, Skrzypek S, Herzog G, Poltorak L (2021) Ephedrine sensing at the electrified liquid-liquid interface supported with micro-punched self-adhesive polyimide film. Sensors Actuators B Chem 4005:130286. https://doi.org/10.1016/j.snb.2021.130286pl_PL
dc.referencesPoltorak L, Eggink I, Hoitink M, Sudholter EJR, De Puit M (2018) Electrified soft interface as a selective sensor for cocaine detection in street samples. Anal Chem 90:7428–7433. https://doi.org/10.1021/acs.analchem.8b00916pl_PL
dc.referencesKontturi K, Murtomäki L (1992) Electrochemical determination of partition coeffitients of drugs. J Pharm Sci 81:970–975pl_PL
dc.referencesMälkiä A, Liljeroth P, Kontturi A-K, Kontturi K (2001) Electrochemistry at lipid monolayer-modified liquid-liquid interfaces as an improvement to drug partitioning studies. J Phys Chem B 105:10884–10892. https://doi.org/10.1021/jp011835epl_PL
dc.referencesOlaya AJ, Ge P, Girault HH (2012) Ion transfer across the water|trifluorotoluene interface. Electrochem Commun 19:101–104. https://doi.org/10.1016/j.elecom.2012.03.010pl_PL
dc.referencesLiu Y, Moshrefi R, Rickard WDA, Scanlon MD, Stockmann TJ, Arrigan DWM (2022) Ion-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format. J Electroanal Chem 909:116113. https://doi.org/10.1016/j.jelechem.2022.116113pl_PL
dc.referencesHerzog G, Beni V (2013) Stripping voltammetry at micro-interface arrays: a review. Anal Chim Acta 769:10–21. https://doi.org/10.1016/j.aca.2012.12.031pl_PL
dc.referencesArrigan DWM (2004) Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129:1157–1165pl_PL
dc.referencesColombo ML, McNeil S, Iwai N, Chang A, Shen M (2016) Electrochemical detection of dopamine via assisted ion transfer at nanopipet electrode using cyclic voltammetry. J Electrochem Soc 163:H3072–H3076. https://doi.org/10.1149/2.0091604jespl_PL
dc.referencesZazpe R, Hibert C, O’Brien J, Lanyon YHYH, Arrigan DWMMDWM (2007) Ion-transfer voltammetry at silicon membrane-based arrays of micro-liquid-liquid interfaces. Lab Chip 7:1732–1737. https://doi.org/10.1039/b712601hpl_PL
dc.referencesXie L, Huang X, Lin X, Su B (2017) Nanoscopic liquid/liquid interface arrays supported by silica isoporous membranes: trans-membrane resistance and ion transfer reactions. J Electroanal Chem 784:62–68. https://doi.org/10.1016/j.jelechem.2016.12.007pl_PL
dc.referencesLiu Y, Strutwolf J, Arrigan DWMM (2015) Ion-transfer voltammetric behavior of propranolol at nanoscale liquid–liquid interface arrays. Anal Chem 87:4487–4494. https://doi.org/10.1021/acs.analchem.5b00461pl_PL
dc.referencesBorgul P, Rudnicki K, Chu L, Leniart A, Skrzypek S, Sudhölter EJREJR, Poltorak L (2020) Layer-by-layer (LbL) assembly of polyelectrolytes at the surface of a fiberglass membrane used as a support of the polarized liquid–liquid interface. Electrochim Acta 363:137215. https://doi.org/10.1016/j.electacta.2020.137215pl_PL
dc.referencesLillie GC, Dryfe RAW, Holmes SM (2001) Zeolite-membrane modulation of simple and facilitated ion transfer. Analyst 126:1857–1860. https://doi.org/10.1039/b105056gpl_PL
dc.referencesKralj B, Dryfe RA (2001) Membrane voltammetry: the interface between two immiscible electrolyte solutions. Phys Chem Chem Phys 3:5274–5282. https://doi.org/10.1039/b107463fpl_PL
dc.referencesRudnicki K, Poltorak L, Skrzypek S, Sudhölter EJR (2018) Fused silica micro-capillaries used for a simple miniaturization of the electrified liquid – liquid interface. Anal Chem 90:7112–7116. https://doi.org/10.1021/acs.analchem.8b01351pl_PL
dc.referencesLi Q, Xie S, Liang Z, Meng X, Liu S, Girault HH, Shao Y (2009) Fast ion-transfer processes at nanoscopic liquid/liquid interfaces. Angew Chemie - Int Ed 48:8010–8013. https://doi.org/10.1002/anie.200903143pl_PL
dc.referencesMunoz JL, Deyhimi F, Coles JA (1983) Silanization of glass in the making of ion-sensitive microelectrodes. J Neurosci Methods 8:231–247. https://doi.org/10.1016/0165-0270(83)90037-7pl_PL
dc.referencesDurmaz M, Zor E, Kocabas E, Bingol H, Akgemci EG (2011) Voltammetric characterization of selective potassium ion transfer across micro-water/1,2-dichloroethane interface facilitated by a novel calix[4]arene derivative. Electrochim Acta 56:5316–5321. https://doi.org/10.1016/j.electacta.2011.04.003pl_PL
dc.referencesStockmann TJ, Montgomery A-M, Ding Z (2012) Determination of alkali metal ion transfers at liquid|liquid interfaces stabilized by a micropipette. J Electroanal Chem 684:6–12. https://doi.org/10.1016/j.jelechem.2012.08.013pl_PL
dc.referencesSaha-Shah A, Weber AE, Karty JA, Ray SJ, Hieftje GM, Baker LA (2015) Nanopipettes: probes for local sample analysis. Chem Sci 6:3334–3341. https://doi.org/10.1039/c5sc00668fpl_PL
dc.referencesRudnicki K, Poltorak L, Skrzypek S, Sudholter EJR (2018) Fused silica microcapillaries used for a simple miniaturization of the electrified liquid − liquid interface. Anal Chem 90:7112–7116. https://doi.org/10.1021/acs.analchem.8b01351pl_PL
dc.referencesBarrett J, Smyth WF, Davidson IE (1973) An examination of acid-base equilibria of 1,4-benzodiazepines by spectrophotometry. J Pharm Pharmacol 25:387–393pl_PL
dc.referencesBarrett J, Smyth WF, Hart JP (1974) The polarographic and spectral behaviour of some 1,4-benzodiazepine metabolites: application to differentiation of mixtures. J Pharm Pharmacol 26:9–17pl_PL
dc.referencesClifford JM, Smyth WF (1973) Polarographic study of the acid-base equilibria existing in aqueous solutions of the 1,4-benzodiazepines, Fresenius’ Zeitschrift Für Anal. Chemie 264:149–153. https://doi.org/10.1007/BF00424630pl_PL
dc.referencesSamec Z (2004) Electrochemistry at the interface between two immiscible electrolyte solutions (IUPAC technical report). Pure Appl Chem 76:2147–2180pl_PL
dc.referencesReymond F, Steyaert G, Carrupt P-A, Testa B, Girault HH (1996) Ionic partition diagrams_ a potential−pH representation.pdf. J Am Chem Soc 118:11951–11957pl_PL
dc.referencesRudnicki K, Sobczak K, Borgul P, Skrzypek S, Poltorak L (2021) Determination of quinine in tonic water at the miniaturized and polarized liquid-liquid interface. Food Chem 364:130417. https://doi.org/10.1016/j.foodchem.2021.130417pl_PL
dc.referencesReymond F, Chopineaux-Courtois V, Steyaert G, Bouchard G, Carrupt P-A, Testa B, Girault HH (1999) Ionic partition diagrams of ionisable drugs: pH-lipophilicity profiles, transfer mechanisms and charge effects on solvation. J Electroanal Chem 462:235–250. https://doi.org/10.1016/S0022-0728(98)00418-5pl_PL
dc.referencesHerzog G, Flynn S, Johnson C, Arrigan DWM (2012) Electroanalytical behavior of poly-L-lysine dendrigrafts at the interface between two immiscible electrolyte solutions. Anal Chem 84:5693–5699pl_PL
dc.referencesViada BN, Yudi LM, Arrigan DWM (2020) Detection of perfluorooctane sulfonate by ion-transfer stripping voltammetry at an array of microinterfaces between two immiscible electrolyte solutions. Analyst 145:5776–5786. https://doi.org/10.1039/d0an00884bpl_PL
dc.referencesFelisilda BMB, Alvarez de Eulate E, Arrigan DWM (2015) Investigation of a solvent-cast organogel to form a liquid-gel microinterface array for electrochemical detection of lysozyme. Anal Chim Acta 893:34–40. https://doi.org/10.1016/j.aca.2015.08.024pl_PL
dc.referencesLiu Y, Sairi M, Neusser G, Kranz C, Arrigan DWMM (2015) Achievement of diffusional independence at nanoscale liquid-liquid interfaces within arrays. Anal Chem 87:5486–5490. https://doi.org/10.1021/acs.analchem.5b01162pl_PL
dc.referencesSairi M, Arrigan DWM (2015) Electrochemical detection of ractopamine at arrays of micro-liquid | liquid interfaces. Talanta 132:205–214. https://doi.org/10.1016/j.talanta.2014.08.060pl_PL
dc.referencesAlvarez De Eulate E, Arrigan DWM (2012) Adsorptive stripping voltammetry of hen-egg-white-lysozyme via adsorption-desorption at an array of liquid-liquid microinterfaces. Anal Chem 84:2505–2511. https://doi.org/10.1021/ac203249ppl_PL
dc.referencesO’Sullivan S, Arrigan DWM (2012) Electrochemical behaviour of myoglobin at an array of microscopic liquid-liquid interfaces. Electrochim Acta 77:71–76. https://doi.org/10.1016/j.electacta.2012.05.070pl_PL
dc.referencesSaito Y (1968) A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev Polarogr 15:177–187. https://doi.org/10.5189/revpolarography.15.177pl_PL
dc.referencesRudnicki K, Poltorak L, Skrzypek S, Sudhölter EJR (2019) Ion transfer voltammetry for analytical screening of fluoroquinolone antibiotics at the water – 1.2-dichloroethane interface. Anal Chim Acta 1085:75–84. https://doi.org/10.1016/j.aca.2019.07.065pl_PL
dc.referencesScanlon MD, Arrigan DWMM (2011) Enhanced electroanalytical sensitivity via interface miniaturisation: ion transfer voltammetry at an array of nanometre liquid-liquid interfaces. Electroanalysis 23:1023–1028. https://doi.org/10.1002/elan.201000667pl_PL
dc.referencesCollins CJ, Lyons C, Strutwolf J, Arrigan DWM (2010) Serum-protein effects on the detection of the β-blocker propranolol by ion-transfer voltammetry at a micro-ITIES array. Talanta 80:1993–1998. https://doi.org/10.1016/j.talanta.2009.10.060pl_PL
dc.referencesMoffat AC, Osselton MD, Widdop B (2011) Clarke's analysis of drugs and poisons. Pharmaceutical press, London. https://doi.org/10.1300/J123v27n02_07pl_PL
dc.referencesMoriya F, Hashimoto Y (2003) Tissue distribution of nitrazepam and 7-aminonitrazepam in a case of nitrazepam intoxication. Forensic Sci Int 131:108–112. https://doi.org/10.1016/S0379-0738(02)00421-8pl_PL
dc.referencesWilhelm M, Battista HJ, Obendorf D (2000) Selective and sensitive assay for the determination of benzodiazepines by high-performance liquid chromatography with simultaneous ultraviolet and reductive electrochemical detection at the hanging mercury drop electrode. J Chromatogr A 897:215–225. https://doi.org/10.1016/S0021-9673(00)00806-2pl_PL
dc.referencesSinan Abdulsattar R (2010) Spectrophotometric determination of nitrazepam in pharmaceutical tablets using flow injection analysis. J Univ Anbar Pure Sci 4:40–45 https://doi.org/10.37652/juaps.2010.43885pl_PL
dc.referencesDeepakumari HN, Revanasiddappa HD (2013) Spectrophotometric estimation of nitrazepam in pure and in pharmaceutical preparations. J Spectrosc 1. https://doi.org/10.1155/2013/671689pl_PL
dc.referencesFritea L, Bănică F, Costea TO, Moldovan L, Iovan C, Cavalu S (2018) A gold nanoparticles - graphene based electrochemical sensor for sensitive determination of nitrazepam. J. Electroanal Chem 830:63–71. https://doi.org/10.1016/j.jelechem.2018.10.015pl_PL
dc.contributor.authorEmaillukasz.poltorak@chemia.uni.lodz.ppl_PL
dc.contributor.authorEmailrenata.wietecha-posluszny@uj.edu.plpl_PL
dc.identifier.doi10.1007/s00604-023-05739-6
dc.disciplinenauki chemicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe