dc.contributor.author | Stelmaszczyk, Paweł | |
dc.contributor.author | Kwaczyński, Karolina | |
dc.contributor.author | Rudnicki, Konrad | |
dc.contributor.author | Skrzypek, Slawomira | |
dc.contributor.author | Wietecha-Posłuszny, Renata | |
dc.contributor.author | Półtorak, Łukasz | |
dc.date.accessioned | 2023-08-01T17:17:33Z | |
dc.date.available | 2023-08-01T17:17:33Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Stelmaszczyk, P., Kwaczyński, K., Rudnicki, K. et al. Nitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interface. Microchim Acta 190, 182 (2023). https://doi.org/10.1007/s00604-023-05739-6 | pl_PL |
dc.identifier.issn | 0026-3672 | |
dc.identifier.uri | http://hdl.handle.net/11089/47741 | |
dc.description.abstract | Two benzodiazepine type drugs, that is, nitrazepam and 7-aminonitrazepam, were studied at the electrified liquid-liquid interface (eLLI). Both drugs are illicit and act sedative in the human body and moreover are used as date rape drugs. Existence of the diazepine ring in the concerned chemicals structure and one additional amine group (for 7-aminonitrazepam) allows for the molecular charging below their pKa values, and hence, both drugs can cross the eLLI interface upon application of the appropriate value of the Galvani potential difference. Chosen molecules were studied at the macroscopic eLLI formed in the four electrode cell and microscopic eLLI formed within a microtip defined as the single pore having 25 μm in diameter. Microscopic eLLI was formed using only a few μL of the organic and the aqueous phase with the help of a 3D printed cell. Parameters such as limit of detection and voltammetric detection sensitivity are derived from the experimental data. Developed methodology was used to detect nitrazepam in pharmaceutical formulation and both drugs (nitrazepam and 7-aminonitrazepam) in spiked biological fluids (urine and blood). | pl_PL |
dc.description.sponsorship | R. Wietecha-Posłuszny and P. Stelmaszczyk are grateful for the financial support (National Science Centre, Grant no. UMO-2019/35/O/ST4/00978: application of developed extraction procedure, study the interfacial behavior of NIT and 7a-NIT), so is L. Poltorak (National Science Centre, Grant no. UMO-2018/31/D/ST4/03259: application of designed fused silica capillary and 3D printed cell for NIT and 7a-NIT detection). | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | Microchimica Acta;190:182 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Date rape drugs | pl_PL |
dc.subject | Psychoactive chemicals | pl_PL |
dc.subject | Voltammetry | pl_PL |
dc.subject | ITIES | pl_PL |
dc.subject | Electrochemical sensor | pl_PL |
dc.title | Nitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interface | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-16 | pl_PL |
dc.contributor.authorAffiliation | Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland | pl_PL |
dc.contributor.authorAffiliation | Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland | pl_PL |
dc.contributor.authorAffiliation | Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland | pl_PL |
dc.identifier.eissn | 1436-5073 | |
dc.references | Soni A, Thiyagarajan A, Reeve J (2022) Feasibility and efectiveness of deprescribing benzodiazepines and Z-drugs: systematic review and meta-analysis. Addiction 118:1–10. https://doi.org/ 10.1111/add.15997 | pl_PL |
dc.references | Baldwin DS, Aitchison K, Bateson A, Curran HV, Davies S, Leonard B, Nutt DJ, Stephens DN, Wilson S (2013) Benzodiazepines: risks and benefits. A reconsideration. J. Psychopharmacol 27:967–971. https://doi.org/10.1177/0269881113503509 | pl_PL |
dc.references | McAuley A, Matheson C, Robertson JR (2022) From the clinic to the street: the changing role of benzodiazepines in the Scottish overdose epidemic. Int. J. Drug Policy 100:103512. https://doi.org/10.1016/j.drugpo.2021.103512 | pl_PL |
dc.references | Grela A, Gautam L, Cole MD (2018) A multifactorial critical appraisal of substances found in drug facilitated sexual assault cases. Forensic Sci. Int 292:50–60. https://doi.org/10.1016/j.forsciint.2018.08.034 | pl_PL |
dc.references | Stelmaszczyk P, Gacek E, Wietecha-Posłuszny R (2021) Optimized and validated DBS / MAE / LC – MS method for rapid determination of date-rape drugs and cocaine in human blood samples — a new tool in forensic analysis. Separations 8(12):249. https://doi.org/10.3390/separations8120249 | pl_PL |
dc.references | Wietecha-Posłuszny R, Lendor S, Garnysz M, Zawadzki M, Kościelniak P (2017) Human bone marrow as a tissue in post-mortem identification and determination of psychoactive substances—screening methodology, J. Chromatogr. B Anal. Technol. Biomed. Life Sci 1061:459–467. https://doi.org/10.1016/j.jchromb.2017.08.006 | pl_PL |
dc.references | Majda A, Mrochem K, Wietecha-Posłuszny R, Zapotoczny S, Zawadzki M (2020) Fast and efficient analyses of the post-mortem human blood and bone marrow using DI-SPME/LC-TOFMS method for forensic medicine purposes. Talanta 209:120533. https://doi.org/10.1016/j.talanta.2019.120533 | pl_PL |
dc.references | Arantes ACF, da Cunha KF, Cardoso MS, Oliveira KD, Costa JL (2021) Development and validation of quantitative analytical method for 50 drugs of antidepressants, benzodiazepines and opioids in oral fluid samples by liquid chromatography–tandem mass spectrometry. Forensic Toxicol 39:179–197. https://doi.org/10.1007/s11419-020-00561-8 | pl_PL |
dc.references | Heidari H, Sadi S (2022) Hydrophobic deep eutectic solvent-based microextraction method for the simultaneous extraction of two benzodiazepines from saliva samples before determination by 96-well microplates-based spectrophotometer with the aid of chemometrics. Sep Sci Plus 5:520–528. https://doi.org/10.1002/sscp.202200060 | pl_PL |
dc.references | Hadi H (2021) A new charge transfer reaction for spectrophotometric determination of nitrazepam using reverse flow injection analysis. J Anal Chem 76:452–458. https://doi.org/10.1134/S1061934821040043 | pl_PL |
dc.references | Zanfrognini B, Pigani L, Zanardi C (2020) Recent advances in the direct electrochemical detection of drugs of abuse. J Solid State Electrochem 24:2603–2616. https://doi.org/10.1007/s10008-020-04686-z | pl_PL |
dc.references | Bilge S, Dogan-Topal B, Gürbüz MM, Yücel A, Sınağ A, Ozkan SA (2022) Recent advances in electrochemical sensing of cocaine: a review. TrAC - Trends Anal Chem 157. https://doi.org/10.1016/j.trac.2022.116768 | pl_PL |
dc.references | De Rycke E, Stove C, Dubruel P, De Saeger S, Beloglazova N (2020) Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens Bioelectron 169:112579. https://doi.org/10.1016/j.bios.2020.112579 | pl_PL |
dc.references | Poltorak L, Sudhölter EJR, de Puit M (2019) Electrochemical cocaine (bio)sensing. From solid electrodes to soft junctions. TrAC - Trends Anal Chem 114:48–55. https://doi.org/10.1016/j.trac.2019.02.025 | pl_PL |
dc.references | De Jong M, Florea A, Eliaerts J, Van Durme F, Samyn N, De Wael K (2018) Tackling poor specificity of cocaine color tests by electrochemical strategies. Anal Chem 90:6811–6819. https://doi.org/10.1021/acs.analchem.8b00876 | pl_PL |
dc.references | De Jong M, Florea A, De Vries AM, Van Nuijs ALN, Covaci A, Van Durme F, Martins JC, Samyn N, De Wael K (2018) Levamisole: a common adulterant in cocaine street samples hindering electrochemical detection of cocaine. Anal Chem 90:5290–5297. https://doi.org/10.1021/acs.analchem.8b00204 | pl_PL |
dc.references | Florea A, Cowen T, Piletsky S, De Wael K (2018) Polymer platforms for selective detection of cocaine in street samples adulterated with levamisole. Talanta 186:362–367. https://doi.org/10.1016/j.talanta.2018.04.061 | pl_PL |
dc.references | Borgul P, Sobczak K, Sipa K, Rudnicki K, Skrzypek S, Trynda A, Poltorak L (2022) Heroin detection in a droplet hosted in a 3D printed support at the miniaturized electrified liquid-Liquid interface. SSRN Electron J 12:1–11. https://doi.org/10.2139/ssrn.4137984 | pl_PL |
dc.references | Florea A, Schram J, De Jong M, Eliaerts J, Van Durme F, Kaur B, Samyn N, De Wael K (2019) Electrochemical strategies for adulterated heroin samples. Anal Chem 91:7920–7928. https://doi.org/10.1021/acs.analchem.9b01796 | pl_PL |
dc.references | Zhou H, Wu D, Cai W (2022) Carbon nanotubes coated with hybrid nanocarbon layers for electrochemical sensing of psychoactive drug. Electrochim Acta 430:141001. https://doi.org/10.1016/j.electacta.2022.141001 | pl_PL |
dc.references | Schram J, Parrilla M, Slosse A, Van Durme F, Åberg J, Björk K, Bijvoets SM, Sap S, Heerschop MWJ, De Wael K (2022) Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples. Microchem J 179:107518. https://doi.org/10.1016/j.microc.2022.107518 | pl_PL |
dc.references | Felipe Montiel N, Parrilla M, Sleegers N, Van Durme F, van Nuijs ALN, De Wael K (2022) Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs. SSRN Electron J 436:141446. https://doi.org/10.2139/ssrn.4219018 | pl_PL |
dc.references | Bartlett CA, Taylor S, Fernandez C, Wanklyn C, Burton D, Enston E, Raniczkowska A, Black M, Murphy L (2016) Disposable screen printed sensor for the electrochemical detection of methamphetamine in undiluted saliva. Chem Cent J 10:1–9. https://doi.org/10.1186/s13065-016-0147-2 | pl_PL |
dc.references | Goodchild SA, Hubble LJ, Mishra RK, Li Z, Goud KY, Barfidokht A, Shah R, Bagot KS, McIntosh AJS, Wang J (2019) Ionic liquid-modified disposable electrochemical sensor strip for analysis of fentanyl. Anal Chem 91:3747–3753. https://doi.org/10.1021/acs.analchem.9b00176 | pl_PL |
dc.references | Mishra RK, Goud KY, Li Z, Moonla C, Mohamed MA, Tehrani F, Teymourian H, Wang J (2020) Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J Am Chem Soc 142:5991–5995. https://doi.org/10.1021/jacs.0c01883 | pl_PL |
dc.references | Klimuntowski M, Alam MM, Singh G, Howlader MMR (2020) Electrochemical sensing of cannabinoids in biofluids: a noninvasive tool for drug detection. ACS Sensors 5:620–636. https://doi.org/10.1021/acssensors.9b02390 | pl_PL |
dc.references | Renaud-Young M, Mayall RM, Salehi V, Goledzinowski M, Comeau FJE, MacCallum JL, Birss VI (2019) Development of an ultra-sensitive electrochemical sensor for Δ9-tetrahydrocannabinol (THC) and its metabolites using carbon paper electrodes. Electrochim Acta 307:351–359. https://doi.org/10.1016/j.electacta.2019.02.117 | pl_PL |
dc.references | de Araujo WR, Cardoso TMG, da Rocha RG, Santana MHP, Munoz RA, Richter EM, Paixao TR, Coltro WK (2018) Portable analytical platforms for forensic chemistry: a review. Anal Chim Acta 1034:1–21. https://doi.org/10.1016/j.aca.2018.06.014 | pl_PL |
dc.references | Slepchenko GB, Gindullina TM, Nekhoroshev SV (2017) Capabilities of the electrochemical methods in the determination of narcotic and psychotropic drugs in forensic chemistry materials. J Anal Chem 72:703–709. https://doi.org/10.1134/S1061934817070127 | pl_PL |
dc.references | Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R, De Wael K, Wang J (2020) Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sensors 5:2679–2700. https://doi.org/10.1021/acssensors.0c01318 | pl_PL |
dc.references | Grothe RA, Lobato A, Mounssef B, Tasić N, Braga AAC, Maldaner AO, Aldous L, Paixão TRLC, Gonçalves LM (2021) Electroanalytical profiling of cocaine samples by means of an electropolymerized molecularly imprinted polymer using benzocaine as the template molecule. Analyst 146:1747–1759. https://doi.org/10.1039/D0AN02274H | pl_PL |
dc.references | Garrido JMPJ, Borges F, Brett CM, Garrido EM (2016) Carbon nanotube β-cyclodextrin-modified electrode for quantification of cocaine in seized street samples. Ionics (Kiel) 22:2511–2518. https://doi.org/10.1007/s11581-016-1765-3 | pl_PL |
dc.references | Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128:3138–3139. https://doi.org/10.1021/ja056957p | pl_PL |
dc.references | Tang D, Tang J, Li Q, Su B, Chen G (2011) Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I. Anal Chem 83:7255–7259. https://doi.org/10.1021/ac201891w | pl_PL |
dc.references | Roushani M, Shahdost-Fard F (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sensors Actuators, B Chem 207:764–771. https://doi.org/10.1016/j.snb.2014.10.131 | pl_PL |
dc.references | White RJ, Phares N, Lubin AA, Xiao Y, Plaxco KW (2008) Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir 24:10513–10518. https://doi.org/10.1021/la800801v | pl_PL |
dc.references | Shi Y, Dai H, Sun Y, Hu J, Ni P, Li Z (2013) Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide. Analyst 138:7152. https://doi.org/10.1039/c3an00897e | pl_PL |
dc.references | Samec Z, Langmaier J, Kakiuchi T (2009) Charge-transfer processes at the interface between hydrophobic ionic liquid and water. Pure Appl Chem 81:1473–1488. https://doi.org/10.1351/PAC-CON-08-08-36 | pl_PL |
dc.references | Arrigan DWM (2013) Voltammetry of proteins at liquid–liquid interfaces. Annu. Reports Sect. “C” Phys Chem 109:167. https://doi.org/10.1039/c3pc90007j | pl_PL |
dc.references | Girault HH (1993) Charge transfer across liquid-liquid interfaces. Mod Asp Electrochem 25:1–62 | pl_PL |
dc.references | Liu B, Mirkin MV (2000) Electrochemistry at microscopic liquid - liquid interfaces. Electroanalysis 12:1433–1446 | pl_PL |
dc.references | Scanlon MD, Smirnov E, Stockmann TJ, Peljo P (2018) Gold nanofilms at liquid−liquid interfaces: an emerging platform for redox electrocatalysis, nanoplasmonic sensors, and electrovariable optics. Chem Rev 118:3722–3751. https://doi.org/10.1021/acs.chemrev.7b00595 | pl_PL |
dc.references | Liu S, Li Q, Shao Y (2011) Electrochemistry at micro- and nanoscopic liquid/liquid interfaces. Chem Soc Rev 40:2236–2253. https://doi.org/10.1039/c0cs00168f | pl_PL |
dc.references | Qian Q, Wilson GS, Bowman-James K, Girault HH (2001) MicroITIES detection of nitrate by facilitated ion transfer. Anal Chem 73:497–503. https://doi.org/10.1021/ac000806h | pl_PL |
dc.references | Faisal SN, Pereira CM, Rho S, Lee HJ (2010) Amperometric proton selective sensors utilizing ion transfer reactions across a microhole liquid/gel interface. Phys Chem Chem Phys 12:15184–15189. https://doi.org/10.1039/c0cp00750a | pl_PL |
dc.references | Lee HJ, Lagger G, Pereira CM, Silva AF, Girault HH (2009) Amperometric tape ion sensors for cadmium(II) ion analysis. Talanta 78:66–70. https://doi.org/10.1016/j.talanta.2008.10.059 | pl_PL |
dc.references | Kim HR, Pereira CM, Han HY, Lee HJ (2015) Voltammetric studies of topotecan transfer across liquid/liquid interfaces and sensing applications. Anal Chem 87:5356–5362. https://doi.org/10.1021/acs.analchem.5b00653 | pl_PL |
dc.references | Laborda E, Molina A (2021) Impact experiments at the interface between two immiscible electrolyte solutions (ITIES). Curr Opin Electrochem 26:100664. https://doi.org/10.1016/j.coelec.2020.100664 | pl_PL |
dc.references | Stockmann TJ, Angel L, Brasiliense V, Combellas C, Kanoufi F (2017) Platinum nanoparticle impacts at a liquid/liquid interface. Angew Chemie Int Ed 56:13493–13497. https://doi.org/10.1002/anie.201707589 | pl_PL |
dc.references | Borgul P, Pawlak P, Rudnicki K, Sipa K, Krzyczmonik P, Trynda A, Skrzypek S, Herzog G, Poltorak L (2021) Ephedrine sensing at the electrified liquid-liquid interface supported with micro-punched self-adhesive polyimide film. Sensors Actuators B Chem 4005:130286. https://doi.org/10.1016/j.snb.2021.130286 | pl_PL |
dc.references | Poltorak L, Eggink I, Hoitink M, Sudholter EJR, De Puit M (2018) Electrified soft interface as a selective sensor for cocaine detection in street samples. Anal Chem 90:7428–7433. https://doi.org/10.1021/acs.analchem.8b00916 | pl_PL |
dc.references | Kontturi K, Murtomäki L (1992) Electrochemical determination of partition coeffitients of drugs. J Pharm Sci 81:970–975 | pl_PL |
dc.references | Mälkiä A, Liljeroth P, Kontturi A-K, Kontturi K (2001) Electrochemistry at lipid monolayer-modified liquid-liquid interfaces as an improvement to drug partitioning studies. J Phys Chem B 105:10884–10892. https://doi.org/10.1021/jp011835e | pl_PL |
dc.references | Olaya AJ, Ge P, Girault HH (2012) Ion transfer across the water|trifluorotoluene interface. Electrochem Commun 19:101–104. https://doi.org/10.1016/j.elecom.2012.03.010 | pl_PL |
dc.references | Liu Y, Moshrefi R, Rickard WDA, Scanlon MD, Stockmann TJ, Arrigan DWM (2022) Ion-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format. J Electroanal Chem 909:116113. https://doi.org/10.1016/j.jelechem.2022.116113 | pl_PL |
dc.references | Herzog G, Beni V (2013) Stripping voltammetry at micro-interface arrays: a review. Anal Chim Acta 769:10–21. https://doi.org/10.1016/j.aca.2012.12.031 | pl_PL |
dc.references | Arrigan DWM (2004) Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129:1157–1165 | pl_PL |
dc.references | Colombo ML, McNeil S, Iwai N, Chang A, Shen M (2016) Electrochemical detection of dopamine via assisted ion transfer at nanopipet electrode using cyclic voltammetry. J Electrochem Soc 163:H3072–H3076. https://doi.org/10.1149/2.0091604jes | pl_PL |
dc.references | Zazpe R, Hibert C, O’Brien J, Lanyon YHYH, Arrigan DWMMDWM (2007) Ion-transfer voltammetry at silicon membrane-based arrays of micro-liquid-liquid interfaces. Lab Chip 7:1732–1737. https://doi.org/10.1039/b712601h | pl_PL |
dc.references | Xie L, Huang X, Lin X, Su B (2017) Nanoscopic liquid/liquid interface arrays supported by silica isoporous membranes: trans-membrane resistance and ion transfer reactions. J Electroanal Chem 784:62–68. https://doi.org/10.1016/j.jelechem.2016.12.007 | pl_PL |
dc.references | Liu Y, Strutwolf J, Arrigan DWMM (2015) Ion-transfer voltammetric behavior of propranolol at nanoscale liquid–liquid interface arrays. Anal Chem 87:4487–4494. https://doi.org/10.1021/acs.analchem.5b00461 | pl_PL |
dc.references | Borgul P, Rudnicki K, Chu L, Leniart A, Skrzypek S, Sudhölter EJREJR, Poltorak L (2020) Layer-by-layer (LbL) assembly of polyelectrolytes at the surface of a fiberglass membrane used as a support of the polarized liquid–liquid interface. Electrochim Acta 363:137215. https://doi.org/10.1016/j.electacta.2020.137215 | pl_PL |
dc.references | Lillie GC, Dryfe RAW, Holmes SM (2001) Zeolite-membrane modulation of simple and facilitated ion transfer. Analyst 126:1857–1860. https://doi.org/10.1039/b105056g | pl_PL |
dc.references | Kralj B, Dryfe RA (2001) Membrane voltammetry: the interface between two immiscible electrolyte solutions. Phys Chem Chem Phys 3:5274–5282. https://doi.org/10.1039/b107463f | pl_PL |
dc.references | Rudnicki K, Poltorak L, Skrzypek S, Sudhölter EJR (2018) Fused silica micro-capillaries used for a simple miniaturization of the electrified liquid – liquid interface. Anal Chem 90:7112–7116. https://doi.org/10.1021/acs.analchem.8b01351 | pl_PL |
dc.references | Li Q, Xie S, Liang Z, Meng X, Liu S, Girault HH, Shao Y (2009) Fast ion-transfer processes at nanoscopic liquid/liquid interfaces. Angew Chemie - Int Ed 48:8010–8013. https://doi.org/10.1002/anie.200903143 | pl_PL |
dc.references | Munoz JL, Deyhimi F, Coles JA (1983) Silanization of glass in the making of ion-sensitive microelectrodes. J Neurosci Methods 8:231–247. https://doi.org/10.1016/0165-0270(83)90037-7 | pl_PL |
dc.references | Durmaz M, Zor E, Kocabas E, Bingol H, Akgemci EG (2011) Voltammetric characterization of selective potassium ion transfer across micro-water/1,2-dichloroethane interface facilitated by a novel calix[4]arene derivative. Electrochim Acta 56:5316–5321. https://doi.org/10.1016/j.electacta.2011.04.003 | pl_PL |
dc.references | Stockmann TJ, Montgomery A-M, Ding Z (2012) Determination of alkali metal ion transfers at liquid|liquid interfaces stabilized by a micropipette. J Electroanal Chem 684:6–12. https://doi.org/10.1016/j.jelechem.2012.08.013 | pl_PL |
dc.references | Saha-Shah A, Weber AE, Karty JA, Ray SJ, Hieftje GM, Baker LA (2015) Nanopipettes: probes for local sample analysis. Chem Sci 6:3334–3341. https://doi.org/10.1039/c5sc00668f | pl_PL |
dc.references | Rudnicki K, Poltorak L, Skrzypek S, Sudholter EJR (2018) Fused silica microcapillaries used for a simple miniaturization of the electrified liquid − liquid interface. Anal Chem 90:7112–7116. https://doi.org/10.1021/acs.analchem.8b01351 | pl_PL |
dc.references | Barrett J, Smyth WF, Davidson IE (1973) An examination of acid-base equilibria of 1,4-benzodiazepines by spectrophotometry. J Pharm Pharmacol 25:387–393 | pl_PL |
dc.references | Barrett J, Smyth WF, Hart JP (1974) The polarographic and spectral behaviour of some 1,4-benzodiazepine metabolites: application to differentiation of mixtures. J Pharm Pharmacol 26:9–17 | pl_PL |
dc.references | Clifford JM, Smyth WF (1973) Polarographic study of the acid-base equilibria existing in aqueous solutions of the 1,4-benzodiazepines, Fresenius’ Zeitschrift Für Anal. Chemie 264:149–153. https://doi.org/10.1007/BF00424630 | pl_PL |
dc.references | Samec Z (2004) Electrochemistry at the interface between two immiscible electrolyte solutions (IUPAC technical report). Pure Appl Chem 76:2147–2180 | pl_PL |
dc.references | Reymond F, Steyaert G, Carrupt P-A, Testa B, Girault HH (1996) Ionic partition diagrams_ a potential−pH representation.pdf. J Am Chem Soc 118:11951–11957 | pl_PL |
dc.references | Rudnicki K, Sobczak K, Borgul P, Skrzypek S, Poltorak L (2021) Determination of quinine in tonic water at the miniaturized and polarized liquid-liquid interface. Food Chem 364:130417. https://doi.org/10.1016/j.foodchem.2021.130417 | pl_PL |
dc.references | Reymond F, Chopineaux-Courtois V, Steyaert G, Bouchard G, Carrupt P-A, Testa B, Girault HH (1999) Ionic partition diagrams of ionisable drugs: pH-lipophilicity profiles, transfer mechanisms and charge effects on solvation. J Electroanal Chem 462:235–250. https://doi.org/10.1016/S0022-0728(98)00418-5 | pl_PL |
dc.references | Herzog G, Flynn S, Johnson C, Arrigan DWM (2012) Electroanalytical behavior of poly-L-lysine dendrigrafts at the interface between two immiscible electrolyte solutions. Anal Chem 84:5693–5699 | pl_PL |
dc.references | Viada BN, Yudi LM, Arrigan DWM (2020) Detection of perfluorooctane sulfonate by ion-transfer stripping voltammetry at an array of microinterfaces between two immiscible electrolyte solutions. Analyst 145:5776–5786. https://doi.org/10.1039/d0an00884b | pl_PL |
dc.references | Felisilda BMB, Alvarez de Eulate E, Arrigan DWM (2015) Investigation of a solvent-cast organogel to form a liquid-gel microinterface array for electrochemical detection of lysozyme. Anal Chim Acta 893:34–40. https://doi.org/10.1016/j.aca.2015.08.024 | pl_PL |
dc.references | Liu Y, Sairi M, Neusser G, Kranz C, Arrigan DWMM (2015) Achievement of diffusional independence at nanoscale liquid-liquid interfaces within arrays. Anal Chem 87:5486–5490. https://doi.org/10.1021/acs.analchem.5b01162 | pl_PL |
dc.references | Sairi M, Arrigan DWM (2015) Electrochemical detection of ractopamine at arrays of micro-liquid | liquid interfaces. Talanta 132:205–214. https://doi.org/10.1016/j.talanta.2014.08.060 | pl_PL |
dc.references | Alvarez De Eulate E, Arrigan DWM (2012) Adsorptive stripping voltammetry of hen-egg-white-lysozyme via adsorption-desorption at an array of liquid-liquid microinterfaces. Anal Chem 84:2505–2511. https://doi.org/10.1021/ac203249p | pl_PL |
dc.references | O’Sullivan S, Arrigan DWM (2012) Electrochemical behaviour of myoglobin at an array of microscopic liquid-liquid interfaces. Electrochim Acta 77:71–76. https://doi.org/10.1016/j.electacta.2012.05.070 | pl_PL |
dc.references | Saito Y (1968) A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev Polarogr 15:177–187. https://doi.org/10.5189/revpolarography.15.177 | pl_PL |
dc.references | Rudnicki K, Poltorak L, Skrzypek S, Sudhölter EJR (2019) Ion transfer voltammetry for analytical screening of fluoroquinolone antibiotics at the water – 1.2-dichloroethane interface. Anal Chim Acta 1085:75–84. https://doi.org/10.1016/j.aca.2019.07.065 | pl_PL |
dc.references | Scanlon MD, Arrigan DWMM (2011) Enhanced electroanalytical sensitivity via interface miniaturisation: ion transfer voltammetry at an array of nanometre liquid-liquid interfaces. Electroanalysis 23:1023–1028. https://doi.org/10.1002/elan.201000667 | pl_PL |
dc.references | Collins CJ, Lyons C, Strutwolf J, Arrigan DWM (2010) Serum-protein effects on the detection of the β-blocker propranolol by ion-transfer voltammetry at a micro-ITIES array. Talanta 80:1993–1998. https://doi.org/10.1016/j.talanta.2009.10.060 | pl_PL |
dc.references | Moffat AC, Osselton MD, Widdop B (2011) Clarke's analysis of drugs and poisons. Pharmaceutical press, London. https://doi.org/10.1300/J123v27n02_07 | pl_PL |
dc.references | Moriya F, Hashimoto Y (2003) Tissue distribution of nitrazepam and 7-aminonitrazepam in a case of nitrazepam intoxication. Forensic Sci Int 131:108–112. https://doi.org/10.1016/S0379-0738(02)00421-8 | pl_PL |
dc.references | Wilhelm M, Battista HJ, Obendorf D (2000) Selective and sensitive assay for the determination of benzodiazepines by high-performance liquid chromatography with simultaneous ultraviolet and reductive electrochemical detection at the hanging mercury drop electrode. J Chromatogr A 897:215–225. https://doi.org/10.1016/S0021-9673(00)00806-2 | pl_PL |
dc.references | Sinan Abdulsattar R (2010) Spectrophotometric determination of nitrazepam in pharmaceutical tablets using flow injection analysis. J Univ Anbar Pure Sci 4:40–45 https://doi.org/10.37652/juaps.2010.43885 | pl_PL |
dc.references | Deepakumari HN, Revanasiddappa HD (2013) Spectrophotometric estimation of nitrazepam in pure and in pharmaceutical preparations. J Spectrosc 1. https://doi.org/10.1155/2013/671689 | pl_PL |
dc.references | Fritea L, Bănică F, Costea TO, Moldovan L, Iovan C, Cavalu S (2018) A gold nanoparticles - graphene based electrochemical sensor for sensitive determination of nitrazepam. J. Electroanal Chem 830:63–71. https://doi.org/10.1016/j.jelechem.2018.10.015 | pl_PL |
dc.contributor.authorEmail | lukasz.poltorak@chemia.uni.lodz.p | pl_PL |
dc.contributor.authorEmail | renata.wietecha-posluszny@uj.edu.pl | pl_PL |
dc.identifier.doi | 10.1007/s00604-023-05739-6 | |
dc.discipline | nauki chemiczne | pl_PL |