Pokaż uproszczony rekord

dc.contributor.authorPośpiech, Ewelina
dc.contributor.authorPisarek, Aleksandra
dc.contributor.authorRudnicka, Joanna
dc.contributor.authorNoroozi, Rezvan
dc.contributor.authorBoroń, Michał
dc.contributor.authorMasny, Aleksander
dc.contributor.authorWysocka, Bożena
dc.contributor.authorMigacz-Gruszka, Kamila
dc.contributor.authorLisman, Dagmara
dc.contributor.authorPruszkowska-Przybylska, Paulina
dc.contributor.authorKobus, Magdalena
dc.contributor.authorSzargut, Maria
dc.contributor.authorDowejko, Joanna
dc.contributor.authorStanisz, Kamila
dc.contributor.authorZacharczuk, Julia
dc.contributor.authorZieliński, Piotr
dc.contributor.authorSitek, Aneta
dc.contributor.authorOssowski, Andrzej
dc.contributor.authorSpólnicka, Magdalena
dc.contributor.authorBranicki, Wojciech
dc.date.accessioned2023-09-04T09:15:16Z
dc.date.available2023-09-04T09:15:16Z
dc.date.issued2023
dc.identifier.citationPośpiech, E., Pisarek, A., Rudnicka, J. et al. Introduction of a multiplex amplicon sequencing assay to quantify DNA methylation in target cytosine markers underlying four selected epigenetic clocks. Clin Epigenet 15, 128 (2023). https://doi.org/10.1186/s13148-023-01545-2pl_PL
dc.identifier.issn1868-7083
dc.identifier.urihttp://hdl.handle.net/11089/47851
dc.description.abstractBackground: DNA methylation analysis has proven to be a powerful tool for age assessment. However, the implementation of epigenetic age prediction in diagnostics or routine forensic casework requires appropriate laboratory methods. In this study, we aimed to compare the performance of large-scale DNA methylation analysis protocols that show promise in terms of accuracy, throughput, multiplexing capacity, and high sensitivity. Results: The protocols were designed to target a predefined panel of 161 genomic CG/CA sites from four known estimators of epigenetic age-related parameters, optimized and validated using artificially methylated controls or blood samples. We successfully targeted 96% of these loci using two enrichment protocols: Ion AmpliSeq™, an amplicon-based method integrated with Ion Torrent S5, and SureSelectXT Methyl-Seq, a hybridization-based method followed by MiSeq FGx sequencing. Both protocols demonstrated high accuracy and robustness. Although hybridization assays have greater multiplexing capabilities, the best overall performance was observed for the amplicon-based protocol with the lowest variability in DNA methylation at 25 ng of starting DNA, mean observed marker coverage of ~ 6.7 k reads, and accuracy of methylation quantification with a mean absolute difference between observed and expected methylation beta value of 0.054. The Ion AmpliSeq method correlated strongly with genome-scale EPIC microarray data (R = 0.91) and showed superiority in terms of methylation measurement accuracy. Method-to-method bias was accounted for by the use of linear transformation, which provided a highly accurate prediction of calendar age with a mean absolute error of less than 5 years for the VISAGE and Hannum age clocks used. The pace of aging (PoAm) and the mortality risk score (MRS) estimators included in our panel represent next-generation clocks, were found to have low to moderate correlations with the VISAGE and Hannum models (R < 0.75), and thus may capture different aspects of epigenetic aging. Conclusions: We propose a laboratory tool that allows the quantification of DNA methylation in cytosines underlying four different clocks, thus providing broad information on epigenetic aging while maintaining a reasonable number of CpG markers, opening the way to a wide range of applications in forensics, medicine, and healthcare.pl_PL
dc.description.sponsorshipThis work is financed by the National Centre for Research and Development (NCBR), Poland, within the framework of call 10/2019 related to scientific research and studies for national defense and security [project no. DOB-BIO10/06/01/2019].pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesClinical Epigenetics;128
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDNA methylation analysis methodspl_PL
dc.subjectHigh-throughput sequencingpl_PL
dc.subjectTarget enrichment protocolspl_PL
dc.subjectEpigenetic age estimationpl_PL
dc.subjectPace of agingpl_PL
dc.subjectMortality risk scorepl_PL
dc.titleIntroduction of a multiplex amplicon sequencing assay to quantify DNA methylation in target cytosine markers underlying four selected epigenetic clockspl_PL
dc.typeArticlepl_PL
dc.page.number16pl_PL
dc.contributor.authorAffiliationMalopolska Centre of Biotechnology, Jagiellonian University, Krakow, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Polandpl_PL
dc.contributor.authorAffiliationMalopolska Centre of Biotechnology, Jagiellonian University, Krakow, Polandpl_PL
dc.contributor.authorAffiliationDoctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Polandpl_PL
dc.contributor.authorAffiliationMalopolska Centre of Biotechnology, Jagiellonian University, Krakow, Polandpl_PL
dc.contributor.authorAffiliationDoctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Polandpl_PL
dc.contributor.authorAffiliationCentral Forensic Laboratory of the Police, Warsaw, Polandpl_PL
dc.contributor.authorAffiliationCentral Forensic Laboratory of the Police, Warsaw, Polandpl_PL
dc.contributor.authorAffiliationCentral Forensic Laboratory of the Police, Warsaw, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Dermatology, Collegium Medicum of the Jagiellonian University, Krakow, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Polandpl_PL
dc.contributor.authorAffiliationCenter for Forensic Science, University of Warsaw, Warsaw, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Forensic Research, Krakow, Polandpl_PL
dc.referencesHorvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):1–20.pl_PL
dc.referencesHannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.pl_PL
dc.referencesWeidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014;15:R24.pl_PL
dc.referencesHorvath S, Oshima J, Martin GM, Lu AT, Quach A, Cohen H, et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria syndrome and ex vivo studies. Aging. 2018;10:1758–75.pl_PL
dc.referencesLevine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and health span. Aging. 2018;10:573–91.pl_PL
dc.referencesLu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging. 2019;11:303–27.pl_PL
dc.referencesZhang Y, Wilson R, Heiss J, Breitling LP, Saum KU, Schöttker B, et al. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat Commun. 2017;8(1):14167.pl_PL
dc.referencesLin Q, Weidner CI, Costa IG, Marioni RE, Ferreira MRP, Deary IJ, et al. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging. 2016;8:394–401.pl_PL
dc.referencesMarioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR, Pattie A. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16(1):1–2.pl_PL
dc.referencesFransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenetics. 2019;11(1):1–7.pl_PL
dc.referencesFreire-Aradas A, Phillips C, Lareu MV. Forensic individual age estimation with DNA: from initial approaches to methylation tests. Forensic Sci Rev. 2017;29:122–44.pl_PL
dc.referencesVidaki A, Kayser M. From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence. Genome Biol. 2017;18:1–3.pl_PL
dc.referencesErlich Y, Shor T, Pe’er I, Carmi S. Identity inference of genomic data using long-range familial searches. Science. 2018;362(6415):690–4.pl_PL
dc.referencesNoroozi R, Ghafouri-Fard S, Pisarek A, Rudnicka J, Spolnicka M, Branicki W, Taheri M, Pośpiech E. DNA methylation-based age clocks: from age prediction to age reversion. Ageing Res Revi. 2021;1(68):101314.pl_PL
dc.referencesVidaki A, Kayser M. Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet. 2018;1(37):180–95.pl_PL
dc.referencesNaue J, Lee HY. Considerations for the need of recommendations for the research and publication of DNA methylation results. Forensic Sci Int Genet. 2018;37:e12–4.pl_PL
dc.referencesNaue J, Hoefsloot HCJ, Kloosterman AD, Verschure PJ. Forensic DNA methylation profiling from minimal traces: how low can we go? Forensic Sci Int Genet. 2018;33:17–23.pl_PL
dc.referencesFreire-Aradas A, Pośpiech E, Aliferi A, Girón-Santamaría L, Mosquera-Miguel A, Pisarek A, Ambroa-Conde A, Phillips C. A comparison of forensic age prediction models using data from four DNA methylation technologies. Front Genet. 2020;11:932.pl_PL
dc.referencesMorselli M, Farrell C, Rubbi L, Fehling HL, Henkhaus R, Pellegrini M. Targeted bisulfite sequencing for biomarker discovery. Methods. 2021;187:13.pl_PL
dc.referencesMikeska T, Bock C, Do H, Dobrovic A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev Mol Diagn. 2012;12:473–87.pl_PL
dc.referencesBell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20:1–4.pl_PL
dc.referencesZbieć-Piekarska R, Spólnicka M, Kupiec T, Parys-Proszek A, Makowska Z, Pałeczka A, et al. Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet. 2015;17:173–9.pl_PL
dc.referencesLee JE, Lee JM, Naue J, Fleckhaus J, Freire-Aradas A, Neubauer J, et al. A collaborative exercise on DNA methylation-based age prediction and body fluid typing. Forensic Sci Int Genet. 2022;57:102656.pl_PL
dc.referencesJung SE, Lim SM, Hong SR, Lee EH, Shin KJ, Lee HY. DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci Int Genet. 2019;38:1–8.pl_PL
dc.referencesFreire-Aradas A, Girón-Santamaría L, Mosquera-Miguel A, Ambroa-Conde A, Phillips C, de Cal MC, Gómez-Tato A, Álvarez-Dios J, Pospiech E, Aliferi A, Court DS. A common epigenetic clock from childhood to old age. Forensic Sci Int Genet. 2022;1(60):102743.pl_PL
dc.referencesNaue J, Hoefsloot HC, Mook OR, Rijlaarsdam-Hoekstra L, van der Zwalm MC, Henneman P, Kloosterman AD, Verschure PJ. Chronological age prediction based on DNA methylation: massive parallel sequencing and random forest regression. Forensic Sci Int Genet. 2017;1(31):19–28.pl_PL
dc.referencesVidaki A, Ballard D, Aliferi A, Miller TH, Barron LP, Syndercombe Court D. DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. Forensic Sci Int Genet. 2017;28:225–36.pl_PL
dc.referencesAliferi A, Sundaram S, Ballard D, Freire-Aradas A, Phillips C, Lareu MV, Court DS. Combining current knowledge on DNA methylation-based age estimation towards the development of a superior forensic DNA intelligence tool. Forensic Sci Int Genet. 2022;1(57):102637.pl_PL
dc.referencesMoser DA, Müller S, Hummel EM, Limberg AS, Dieckmann L, Frach L, et al. Targeted bisulfite sequencing: a novel tool for the assessment of DNA methylation with high sensitivity and increased coverage. Psychoneuroendocrinology. 2020;120:104784.pl_PL
dc.referencesZiller MJ, Stamenova EK, Gu H, Gnirke A, Meissner A. Targeted bisulfite sequencing of the dynamic DNA methylome. Epigenet Chromatin. 2016;9(1):1–9.pl_PL
dc.referencesHeidegger A, Pisarek A, de la Puente M, Niederstätter H, Pośpiech E, Woźniak A, Schury N, Unterländer M, Sidstedt M, Junker K, Garcia MV. Development and inter-laboratory validation of the VISAGE enhanced tool for age estimation from semen using quantitative DNA methylation analysis. Forensic Sci Int: Genet. 2022;1(56):102596.pl_PL
dc.referencesHeidegger A, Xavier C, Niederstätter H, De la Puente M, Pośpiech E, Pisarek A, Kayser M, Branicki W, Parson W. VISAGE consortium development and optimization of the VISAGE basic prototype tool for forensic age estimation. Forensic Sci Int Genet. 2020;1(48):102322.pl_PL
dc.referencesWoźniak A, Heidegger A, Piniewska-Róg D, Pośpiech E, Xavier C, Pisarek A, et al. Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging. 2021;13:6459–84.pl_PL
dc.referencesPisarek A, Pośpiech E, Heidegger A, Xavier C, Papież A, Piniewska-Róg D, et al. Epigenetic age prediction in semen - marker selection and model development. Aging. 2021;13:19145–64.pl_PL
dc.referencesHan Y, Franzen J, Stiehl T, Gobs M, Kuo CC, Nikolić M, et al. New targeted approaches for epigenetic age predictions. BMC Biol. 2020;18:1–15.pl_PL
dc.referencesBelsky DW, Caspi A, Arseneault L, Baccarelli A, Corcoran D, Gao X, et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. Elife. 2020;9:1–56.pl_PL
dc.referencesZhang Y, Wilson R, Heiss J, Breitling LP, Saum KU, Schöttker B, Holleczek B, Waldenberger M, Peters A, Brenner H. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat Commun. 2017;8(1):14617.pl_PL
dc.referencesLi M, Zhu C, Xue Y, Miao C, He R, Li W, et al. A DNA methylation signature for the prediction of tumour recurrence in stage II colorectal cancer. Br J Cancer. 2023;128:1681–9.pl_PL
dc.referencesWang X, Cheng Y, Yan LL, An R, Wang XY, Wang HY. Exploring DNA methylation profiles altered in cryptogenic hepatocellular carcinomas by high-throughput targeted DNA methylation sequencing: a preliminary study for cryptogenic hepatocellular carcinoma. Onco Targets Ther. 2020;13:9901.pl_PL
dc.referencesDeng J, Shoemaker R, Xie B, Gore A, Leproust EM, Antosiewicz-Bourget J, et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol. 2009;27:353–60.pl_PL
dc.referencesDiep D, Plongthongkum N, Gore A, Fung HL, Shoemaker R, Zhang K. Library-free methylation sequencing with bisulfite padlock probes. Nat Methods. 2012;9:270–2.pl_PL
dc.referencesXavier C, de la Puente M, Mosquera-Miguel A, Freire-Aradas A, Kalamara V, Ralf A, Revoir A, Gross TE, Schneider PM, Ames C, Hohoff C. Development and inter-laboratory evaluation of the VISAGE enhanced tool for appearance and ancestry inference from DNA. Forensic Sci Int Genet. 2022;1(61):102779.pl_PL
dc.referencesPośpiech E, Kukla-Bartoszek M, Karłowska-Pik J, Zieliński P, Woźniak A, Boroń M, Dąbrowski M, Zubańska M, Jarosz A, Grzybowski T, Płoski R. Exploring the possibility of predicting human head hair greying from DNA using whole-exome and targeted NGS data. BMC Genomics. 2020;21:1–8.pl_PL
dc.referencesBock C, Halbritter F, Carmona FJ, Tierling S, Datlinger P, Assenov Y, et al. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol. 2016;34:726–37.pl_PL
dc.referencesLuo Z, Pickle L, Hatch A, Ewing A, Hyland F, Berman D, et al. Abstract 158: custom primer design pipeline and analysis workflow for targeted methylation sequencing using NGS Ion AmpliSeq technology. Cancer Res. 2020;80:158–158.pl_PL
dc.referencesFabrizio FP, Castellana S, Centra F, Sparaneo A, Mastroianno M, Mazza T, Coco M, Trombetta D, Cingolani N, Centonza A, Graziano P. Design and experimental validation of OPERA_MET-A panel for deep methylation analysis by next generation sequencing. Front Oncol. 2022;11(12):968804.pl_PL
dc.referencesCrary-Dooley FK, Tam ME, Dunaway KW, Hertz-Picciotto I, Schmidt RJ, LaSalle JM. A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics. 2017;12(3):206–14.pl_PL
dc.referencesFeng L, Peng F, Li S, Jiang L, Sun H, Ji A, et al. Systematic feature selection improves accuracy of methylation-based forensic age estimation in Han Chinese males. Forensic Sci Int Genet. 2018;35:38–45.pl_PL
dc.referencesKennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Aging: a common driver of chronic diseases and a target for novel interventions. Cell. 2014;159:709.pl_PL
dc.referencesKaeberlein M. Longevity and aging. F1000Prime Rep. 2013;5:5.pl_PL
dc.referencesBelsky DW, Caspi A, Corcoran DL, Sugden K, Poulton R, Arseneault L, Baccarelli A, Chamarti K, Gao X, Hannon E, Harrington HL. DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife. 2022;14(11):e73420.pl_PL
dc.referencesBelsky DW, Moffitt TE, Cohen AA, Corcoran DL, Levine ME, Prinz JA, et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol. 2018;187:1220–30.pl_PL
dc.referencesLu AT, Binder AM, Zhang J, Yan Q, Reiner AP, Cox SR, et al. DNA methylation GrimAge version 2. Aging. 2022;14:9484–549.pl_PL
dc.referencesBernabeu E, McCartney DL, Gadd DA, Hillary RF, Lu AT, Murphy L, Wrobel N, Campbell A, Harris SE, Liewald D, Hayward C. Refining epigenetic prediction of chronological and biological age. Genome Med. 2023;15(1):1–5.pl_PL
dc.referencesMcCrory C, Fiorito G, Hernandez B, Polidoro S, O’Halloran AM, Hever A, et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol A Biol Sci Med Sci. 2021;76:741–9.pl_PL
dc.referencesMcGreevy KM, Radak Z, Torma F, Jokai M, Lu AT, Belsky DW, Binder A, Marioni RE, Ferrucci L, Pośpiech E, Branicki W. DNAmFitAge: biological age indicator incorporating physical fitness. Aging. 2023;15(10):3904.pl_PL
dc.referencesNoguera-Castells A, García-Prieto CA, Álvarez-Errico D, Esteller M. Validation of the new EPIC DNA methylation microarray (900K EPIC v2) for high-throughput profiling of the human DNA methylome. Epigenetics. 2023;18(1):2185742.pl_PL
dc.referencesBock C. Analysing and interpreting DNA methylation data. Nat Rev Genet. 2012;13:705–19.pl_PL
dc.referencesTeam R. R: A language and environment for statistical computing. MSOR Connect 2014pl_PL
dc.referencesKrueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2.pl_PL
dc.referencesLi H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.pl_PL
dc.referencesRobinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:1.pl_PL
dc.referencesMcKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.pl_PL
dc.referencesWani AH, Armstrong D, Dahrendorff J, Uddin M. Randomize: a web server for data randomization. Arch Proteom Bioinform. 2020;1:31.pl_PL
dc.referencesIllumina. GenomeStudio methylation module v1.8 user guide (11319130). 2010pl_PL
dc.referencesFortin JP, Triche TJ, Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33:558–60.pl_PL
dc.referencesAryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9.pl_PL
dc.referencesThrush KL, Higgins-Chen AT, Liu Z, Levine ME. R methylCIPHER: a methylation clock investigational package for hypothesis-driven evaluation & research. biorxiv. 2022. https://doi.org/10.1101/2022.07.13.499978v1.pl_PL
dc.identifier.doi10.1186/s13148-023-01545-2
dc.relation.volume15pl_PL
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe