dc.contributor.author | Bodzioch, Agnieszka | |
dc.contributor.author | Pietrzak, Anna | |
dc.contributor.author | Kaszynski, Piotr | |
dc.date.accessioned | 2023-09-04T13:20:02Z | |
dc.date.available | 2023-09-04T13:20:02Z | |
dc.date.issued | 2021-09-17 | |
dc.identifier.citation | Org. Lett. 2021, 23, 19, 7508–7512 | pl_PL |
dc.identifier.issn | 1523-7060 | |
dc.identifier.uri | http://hdl.handle.net/11089/47855 | |
dc.description.abstract | Atropisomers of three Blatter radicals were obtainedby the addition of 8-substituted 1-naphthyllithiums to 3-phenyl and3-t-butylbenzo[e][1,2,4]triazine and separated by chiral high-performance liquid chromatography. Their absolute configurationswere assigned by a comparison of experimental and time-dependent density functional theory calculated electronic circulardichroism spectra. The free energy of activation,ΔG‡298, and thehalf life of racemization,t1/2, at 298 K were determined at∼25 kcal mol−1and <130 h, respectively. Intramolecularπ−πinteractionsin radicals were evident from single-crystal X-ray diffraction, density functional theory, and electrochemical analyses. | pl_PL |
dc.description.sponsorship | This work was supported by the Foundation for Polish Science(TEAM/2016-3/24) and National Science Centre (2020/38/A/ST4/00597 and 2019/03/X/ST4/01147) grants. We thankProf. Piotr Chmielewski (Wrocław University) for assistancewith ECD measurements. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | American Chemical Society | pl_PL |
dc.relation.ispartofseries | Organic Letters; | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Aromatic compounds | pl_PL |
dc.subject | Hydrocarbons | pl_PL |
dc.subject | Kinetic parameters | pl_PL |
dc.subject | Molecular structure | pl_PL |
dc.subject | Reaction products | pl_PL |
dc.title | Axially Chiral Stable Radicals: Resolution and Characterization ofBlatter Radical Atropisomers | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 7508–7512 | pl_PL |
dc.contributor.authorAffiliation | Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łodź , Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, University of Łodź , 91-403 ́ Łodź , Poland | pl_PL |
dc.contributor.authorAffiliation | Faculty of Chemistry, Łodź University of Technology, 90-924 Łodź , Poland | pl_PL |
dc.identifier.eissn | 1523-7052 | |
dc.references | Ji, L.; Shi, J.; Wei, J.; Yu, T.; Huang, W. Air-stable organic radicals: New-generation materials for flexible electronics? Adv. Mater. 2020, 32, 1908015. | pl_PL |
dc.references | Friebe, C.; Schubert, U. S. High-Power-Density Organic Radical Batteries. In Electrochemical Energy Storage: Next Generation Battery Concepts; Eichel, R.-A., Ed.; Springer: Cham, Switzerland, 2019; pp 65− 99. | pl_PL |
dc.references | Wilcox, D. A.; Agarkar, V.; Mukherjee, S.; Boudouris, B. W. Stable radical materials for energy applications. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 83−103. | pl_PL |
dc.references | Aqil, A.; Vlad, A.; Piedboeuf, M.-L.; Aqil, M.; Job, N.; Melinte, S.; Detrembleur, C.; Jérôme, C. A new design of organic radical batteries (ORBs): carbon nanotube buckypaper electrode functionalized by electrografting. Chem. Commun. 2015, 51, 9301−9304. | pl_PL |
dc.references | Hudson, J. M.; Hele, T. J. H.; Evans, E. W. Efficient light-emitting diodes from organic radicals with doublet emission. J. Appl. Phys. 2021, 129, 180901. | pl_PL |
dc.references | Cui, Z.; Abdurahman, A.; Ai, X.; Li, F. Stable luminescent radicals and radical-based LEDs with doublet emission. CCS Chem. 2020, 2, 1129−1145. | pl_PL |
dc.references | Peng, Q.; Obolda, A.; Zhang, M.; Li, F. Organic light-emitting diodes using a neutral π radical as emitter: The emission from a doublet. Angew. Chem., Int. Ed. 2015, 54, 7091−7095. | pl_PL |
dc.references | Ai, X.; Evans, E. W.; Dong, S.; Gillett, A. J.; Guo, H.; Chen, Y.; Hele, T. J. H.; Friend, R. H.; Li, F. Efficient radical-based light-emitting diodes with doublet emission. Nature 2018, 563, 536−540. | pl_PL |
dc.references | Naaman, R.; Waldeck, D. H. Spintronics and chirality: Spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 2015, 66, 263−281. | pl_PL |
dc.references | Geyer, M.; Gutierrez, R.; Mujica, V.; Cuniberti, G. Chiralityinduced spin selectivity in a coarse-grained tight-binding model for helicene. J. Phys. Chem. C 2019, 123, 27230−27241. | pl_PL |
dc.references | Göhler, B.; Hamelbeck, V.; Markus, T. Z.; Kettner, M.; Hanne, G. F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 2011, 331, 894−897. | pl_PL |
dc.references | Kiran, V.; Mathew, S. P.; Cohen, S. R.; Hernández-Delgado, I.; Lacour, J.; Naaman, R. HelicenesA new class of organic spin filter. Adv. Mater. 2016, 28, 1957−1962. | pl_PL |
dc.references | de Jong, M. P. Recent progress in organic spintronics. Open Phys. 2016, 14, 337−353. | pl_PL |
dc.references | Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 2011, 40, 3336−3355. | pl_PL |
dc.references | Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 2011, 40, 3336−3355. | pl_PL |
dc.references | Mas-Torrent, M.; Crivillers, N.; Mugnaini, V.; Ratera, I.; Rovira, C.; Veciana, J. Organic radicals on surfaces: Towards molecular spintronics. J. Mater. Chem. 2009, 19, 1691−1695. | pl_PL |
dc.references | Casu, M. B. Nanoscale studies of organic radicals: Surface, interface, and spinterface. Acc. Chem. Res. 2018, 51, 753−760. | pl_PL |
dc.references | Rikken, G. L. J. A.; Raupach, E. Observation of magneto-chiral dichroism. Nature 1997, 390, 493−494. | pl_PL |
dc.references | Train, C.; Gruselle, M.; Verdaguer, M. The fruitful introduction of chirality and control of absolute configurations in molecular magnets. Chem. Soc. Rev. 2011, 40, 3297−3312. | pl_PL |
dc.references | Minguet, M.; Luneau, D.; Lhotel, E.; Villar, V.; Paulsen, C.; Amabilino, D. B.; Veciana, J. An enantiopure molecular ferromagnet. Angew. Chem., Int. Ed. 2002, 41, 586−589. | pl_PL |
dc.references | Inoue, K.; Ohkoshi, S.-i.; Imai, H. Chiral Molecule-Based Magnets In Magnetism: Molecules to Materials V; Miller, J. S., Drillon, M., Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp 41−70. | pl_PL |
dc.references | Mayorga Burrezo, P.; Jimenez, V. G.; Blasi, D.; Ratera, I.; Campana, A. G.; Veciana, J. Organic free radicals as circularly polarized luminescence emitters. Angew. Chem., Int. Ed. 2019, 58, 16282−16288. | pl_PL |
dc.references | Pop, F.; Auban-Senzier, P.; Canadell, E.; Rikken, G. L. J. A.; Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 2014, 5, 3757. | pl_PL |
dc.references | Rugg, B. K.; Krzyaniak, M. D.; Phelan, B. T.; Ratner, M. A.; Young, R. M.; Wasielewski, M. R. Photodriven quantum teleportation of an electron spin state in a covalent donor-acceptor-radical system. Nat. Chem. 2019, 11, 981−986. | pl_PL |
dc.references | Zak, J. K.; Miyasaka, M.; Rajca, S.; Lapkowski, M.; Rajca, A. Radical cation of helical, cross-conjugated β-oligothiophene. J. Am. Chem. Soc. 2010, 132, 3246−3247. | pl_PL |
dc.references | Gliemann, B. D.; Petrovic, A. G.; Zolnhofer, E. M.; Dral, P. D.; Hampel, F.; Breitenbruch, G.; Schulze, P.; Raghavan, V.; Meyer, K.; Polavarapu, P. L.; Berova, N.; Kivala, M. Configurationally stable chiral dithia-bridged hetero[4]helicene radical cation: Electronic structure and absolute configuration. Chem. - Asian J. 2017, 12, 31−35. | pl_PL |
dc.references | Shu, C.; Zhang, H.; Olankitwanit, A.; Rajca, S.; Rajca, A. Highspin diradical dication of chiral π-conjugated double helical molecule. J. Am. Chem. Soc. 2019, 141, 17287−17294. | pl_PL |
dc.references | Kasemthaveechok, S.; Abella, L.; Jean, M.; Cordier, M.; Roisnel, T.; Vanthuyne, N.; Guizouarn, T.; Cador, O.; Autschbach, J.; Crassous, J.; Favereau, L. Axially and helically chiral cationic radical bicarbazoles: SOMO−HOMO level inversion and chirality impact on the stability of mono- and diradical cations. J. Am. Chem. Soc. 2020, 142, 20409− 20418. | pl_PL |
dc.references | Ueda, A.; Wasa, H.; Suzuki, S.; Okada, K.; Sato, K.; Takui, T.; Morita, Y. Chiral stable phenalenyl radical: Synthesis, electronic-spin structure, and optical properties of [4]helicene-structured diazaphenalenyl. Angew. Chem., Int. Ed. 2012, 51, 6691−6695. | pl_PL |
dc.references | Wang, Y.; Zhang, H.; Pink, M.; Olankitwanit, A.; Rajca, S.; Rajca, A. Radical cation and neutral radical of aza-thia[7]helicene with SOMO−HOMO energy level inversion. J. Am. Chem. Soc. 2016, 138, 7298−7304. | pl_PL |
dc.references | Ravat, P.; Ribar, P.; Rickhaus, M.; Haussinger, D.; Neuburger, M.; Juricek, M. Spin-delocalization in a helical open-shell hydrocarbon. J. Org. Chem. 2016, 81, 12303−12317. | pl_PL |
dc.references | Kato, K.; Furukawa, K.; Mori, T.; Osuka, A. Porphyrin-based airstable helical radicals. Chem. - Eur. J. 2018, 24, 572−575. | pl_PL |
dc.references | Shaikh, A. C.; Moutet, J.; Veleta, J. M.; Hossain, M. M.; Bloch, J.; Astashkin, A. V.; Gianetti, T. A. Persistent, highly localized, and tunable [4]helicene radicals. Chem. Sci. 2020, 11, 11060−11067. | pl_PL |
dc.references | Tani, F.; Narita, M.; Murafuji, T. Helicene radicals: Molecules bearing a combination of helical chirality and unpaired electron spin. ChemPlusChem 2020, 85, 2093−2104. | pl_PL |
dc.references | Constantinides, C. P.; Koutentis, P. A.; Loizou, G. Synthesis of 7- aryl/heteraryl-1,3-diphenyl-1,2,4-benzotriazinyls via palladium catalyzed Stille and Suzuki-Miyaura reactions. Org. Biomol. Chem. 2011, 9, 3122−3125. | pl_PL |
dc.references | Bodzioch, A.; Zheng, M.; Kaszynski, P.; Utecht, G. Functional group transformations in derivatives of 1,4-dihydrobenzo[1,2,4]- triazinyl radical. J. Org. Chem. 2014, 79, 7294−7310. | pl_PL |
dc.references | Berezin, A. A.; Constantinides, C. P.; Mirallai, S. I.; Manoli, M.; Cao, L. L.; Rawson, J. M.; Koutentis, P. A. Synthesis and properties of imidazolo-fused benzotriazinyl radicals. Org. Biomol. Chem. 2013, 11, 6780−6795. | pl_PL |
dc.references | Rogers, F. J. M.; Norcott, P. L.; Coote, M. L. Recent advances in the chemistry of benzo[e][1,2,4]triazinyl radicals. Org. Biomol. Chem. 2020, 18, 8255−8277. | pl_PL |
dc.references | Berezin, A. A.; Zissimou, G.; Constantinides, C. P.; Beldjoudi, Y.; Rawson, J. M.; Koutentis, P. A. Route to benzo- and pyrido-fused 1,2,4- triazinyl radicals via N′-(het)aryl-N′-[2-nitro(het)aryl]hydrazides. J. Org. Chem. 2014, 79, 314−327. | pl_PL |
dc.references | Savva, A. C.; Mirallai, S. I.; Zissimou, G. A.; Berezin, A. A.; Demetriades, M.; Kourtellaris, A.; Constantinides, C. P.; Nicolaides, C.; Trypiniotis, T.; Koutentis, P. A. Preparation of Blatter radicals via aza- Wittig chemistry: The reaction of N-aryliminophosphoranes with 1- (het)aroyl-2-aryldiazenes. J. Org. Chem. 2017, 82, 7564−7575. | pl_PL |
dc.references | Ji, Y.; Long, L.; Zheng, Y. Recent advances of stable Blatter radicals: synthesis, properties and applications. Mater. Chem. Front. 2020, 4, 3433−3443. | pl_PL |
dc.references | Constantinides, C. P.; Koutentis, P. K.; Krassos, H.; Rawson, J. M.; Tasiopoulos, A. J. Characterization and magnetic properties of a “super stable” radical 1,3-diphenyl-7-trifluoromethyl-1,4-dihydro-1,2,4- benzotriazin-4-yl. J. Org. Chem. 2011, 76, 2798−2806. | pl_PL |
dc.references | Constantinides, C. P.; Obijalska, E.; Kaszyński, P. Access to 1,4- dihydrobenzo[e][1,2,4]triazin-4-yl derivatives. Org. Lett. 2016, 18, 916−919. | pl_PL |
dc.references | Constantinides, C. P.; Koutentis, P. A.; Rawson, J. M. Ferromagnetic interactions in a 1D alternating linear chain of π- stacked 1,3-diphenyl-7-(thien-2-yl)-1,4-dihydro-1,2,4-benzotriazin-4- yl radicals. Chem. - Eur. J. 2012, 18, 7109−7116. (44) Gardias, A.; Kaszyński, P.; Obijalska, E | pl_PL |
dc.references | Gardias, A.; Kaszyński, P.; Obijalska, E.; Trzybiński, D.; Domagała, S.; Woźniak, K.; Szczytko, J. Magnetostructural investigation of orthogonal 1-aryl-3-phenyl-1,4-dihydrobenzo[e][1,2,4]- triazin-4-yl derivatives. Chem. - Eur. J. 2018, 24, 1317−1329. | pl_PL |
dc.references | Karecla, G.; Papagiorgis, P.; Panagi, N.; Zissimou, G. A.; Constantinides, C. P.; Koutentis, P. A.; Itskos, G.; Hayes, S. C. Emission from the stable Blatter radical. New J. Chem. 2017, 41, 8604−8613. | pl_PL |
dc.references | Connelly, N. G.; Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 1996, 96, 877−910. | pl_PL |
dc.references | Connelly, N. G.; Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 1996, 96, 877−910. | pl_PL |
dc.references | Reist, M.; Testa, B.; Carrupt, P.-A.; Jung, M.; Schurig, V. Racemization, enantiomerization, diastereomerization, and epimerization: Their meaning and pharmacological significance. Chirality 1995, 7, 396−400. | pl_PL |
dc.identifier.doi | 10.1021/acs.orglett.1c02733 | |
dc.relation.volume | 23 | pl_PL |
dc.discipline | nauki chemiczne | pl_PL |