Show simple item record

dc.contributor.authorAndrzejewski, Krzysztof
dc.contributor.authorGalajinsky, A.
dc.contributor.authorGonera, Joanna
dc.date.accessioned2014-07-23T07:18:43Z
dc.date.available2014-07-23T07:18:43Z
dc.date.copyright©2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
dc.date.issued2014
dc.identifier.issn1873-1562
dc.identifier.otherDOI: 10.1016/j.nuclphysb.2014.05.025
dc.identifier.urihttp://hdl.handle.net/11089/5226
dc.descriptionK.A. and J.G. are grateful to Piotr Kosiński for helpful and illuminating discussions. We thank Peter Horváthy and Andrei Smilga for useful correspondence. This work was sup-ported by the NCN grant DEC-2013/09/B/ST2/02205 (K.A. and J.G.) and by the RFBR grants 13-02-90602-Arm (A.G.) and 14-02-31139-Mol (I.M.) as well as by the MSU program “Nauka” under the project 825 (A.G. and I.M.). I.M. gratefully acknowledges the support of the Dynasty Foundation. ©2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
dc.description.abstractIt is demonstrated that the Pais–Uhlenbeck oscillator in arbitrary dimension enjoys the l -conformal Newton–Hooke symmetry provided frequencies of oscillation form the arithmetic sequence ωk=(2k−1)ω1, where k=1,…,n, and l is the half-integer View the MathML source. The model is shown to be maximally superintegrable. A link to n decoupled isotropic oscillators is discussed and an interplay between the l-conformal Newton–Hooke symmetry and symmetries characterizing each individual isotropic oscillator is analyzed.pl_PL
dc.description.sponsorshipThis work was sup-ported by the NCN grant DEC-2013/09/B/ST2/02205 (K.A. and J.G.) and by the RFBR grants 13-02-90602-Arm (A.G.) and 14-02-31139-Mol (I.M.) as well as by the MSU program “Nauka” under the project 825 (A.G. and I.M.). I.M. gratefully acknowledges the support of the Dynasty Foundation.
dc.language.isoenpl_PL
dc.publisherNorth-Hollandpl_PL
dc.relation.ispartofseriesNuclear Physics B;Volume 885
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.titleConformal Newton–Hooke symmetry of Pais–Uhlenbeck oscillatorpl_PL
dc.typeArticlepl_PL
dc.page.numberp. 150–162pl_PL
dc.contributor.authorAffiliationJoanna Gonera - Department of Computer Science, Faculty of Physics and Applied Informatics, University of Łódźpl_PL
dc.contributor.authorAffiliationA. Galajinsky - Laboratory of Mathematical Physics, Tomsk Polytechnic Universitypl_PL
dc.contributor.authorAffiliationJoanna Gonera - Department of Computer Science, Faculty of Physics and Applied Informatics, University of Łódźpl_PL
dc.contributor.authorAffiliationI. Masterov - Laboratory of Mathematical Physics, Tomsk Polytechnic Universitypl_PL
dc.referencesR.P. Woodard, Lect. Notes Phys. 720 (2007) 403, arXiv:astro-ph/0601672.
dc.referencesA. Pais, G.E. Uhlenbeck, Phys. Rev. 79 (1950) 145.
dc.referencesA.V. Smilga, SIGMA 5 (2009) 017, arXiv:0808.0139.
dc.referencesK. Andrzejewski, J. Gonera, P. Maslanka, Prog. Theor. Phys. 125 (2011) 247, arXiv:0904.3055.
dc.referencesK. Bolonek, P. Kosi´nski, Acta Phys. Pol. B 36 (2005) 2115, arXiv:quant-ph/0501024.
dc.referencesV.V. Nesterenko, Phys. Rev. D 75 (2007) 087703, arXiv:hep-th/0612265.
dc.referencesU. Niederer, Helv. Phys. Acta 46 (1973) 191.
dc.referencesA. Galajinsky, Nucl. Phys. B 832 (2010) 586, arXiv:1002.2290.
dc.referencesJ. Gomis, K. Kamimura, Phys. Rev. D 85 (2012) 045023, arXiv:1109.3773.
dc.referencesJ. Negro, M.A. del Olmo, A. Rodriguez-Marco, J. Math. Phys. 38 (1997) 3786.
dc.referencesA. Galajinsky, I. Masterov, Phys. Lett. B 702 (2011) 265, arXiv:1104.5115.
dc.referencesA. Galajinsky, I. Masterov, Phys. Lett. B 723 (2013) 190, arXiv:1303.3419.
dc.referencesJ. Lukierski, P.C. Stichel, W.J. Zakrzewski, Phys. Lett. A 357 (2006) 1, arXiv:hep-th/0511259.
dc.referencesJ. Lukierski, P.C. Stichel, W.J. Zakrzewski, Phys. Lett. B 650 (2007) 203, arXiv:hep-th/0702179.
dc.referencesF.L. Liu, Y. Tian, Phys. Lett. A 372 (2008) 6041, arXiv:0806.1310.
dc.referencesA. Galajinsky, Phys. Rev. D 78 (2008) 087701, arXiv:0808.1553.
dc.referencesC. Duval, P.A. Horváthy, J. Phys. A 42 (2009) 465206, arXiv:0904.0531.
dc.referencesA. Galajinsky, O. Lechtenfeld, Phys. Rev. D 80 (2009) 065012, arXiv:0907.2242.
dc.referencesJ.A. de Azcarraga, J. Lukierski, Phys. Lett. B 678 (2009) 411, arXiv:0905.0141.
dc.referencesA. Galajinsky, I. Masterov, Phys. Lett. B 675 (2009) 116, arXiv:0902.2910.
dc.referencesA. Galajinsky, Phys. Lett. B 680 (2009) 510, arXiv:0906.5509.
dc.referencesS. Fedoruk, P. Kosinski, J. Lukierski, P. Maslanka, Phys. Lett. B 699 (2011) 129, arXiv:1012.0480.
dc.referencesS. Fedoruk, E. Ivanov, J. Lukierski, Phys. Rev. D 83 (2011) 085013, arXiv:1101.1658.
dc.referencesC. Duval, P. Horváthy, J. Phys. A 44 (2011) 335203, arXiv:1104.1502.
dc.referencesP.M. Zhang, G.W. Gibbons, P.A. Horváthy, Phys. Rev. D 85 (2012) 045031, arXiv:1112.4793.
dc.referencesS. Fedoruk, J. Lukierski, Phys. Rev. D 84 (2011) 065002, arXiv:1105.3444.
dc.referencesI. Masterov, J. Math. Phys. 53 (2012) 072904, arXiv:1112.4924.
dc.referencesK. Andrzejewski, J. Gonera, P. Maslanka, Phys. Rev. D 86 (2012) 065009, arXiv:1204.5950.
dc.referencesN. Aizawa, J. Phys. A 45 (2012) 475203, arXiv:1206.2708.
dc.referencesP.M. Zhang, P.A. Horváthy, K. Andrzejewski, J. Gonera, P. Kosin’ski, Ann. Phys. 333 (2013) 335, arXiv:1207.2875.
dc.referencesA. Galajinsky, I. Masterov, Nucl. Phys. B 866 (2013) 212, arXiv:1208.1403.
dc.referencesK. Andrzejewski, J. Gonera, Phys. Lett. B 721 (2013) 319.
dc.referencesK. Andrzejewski, J. Gonera, A. Kijanka-Dec, Phys. Rev. D 87 (2013) 065012, arXiv:1301.1531.
dc.referencesK. Andrzejewski, J. Gonera, Phys. Rev. D 88 (2013) 065011, arXiv:1305.4777.
dc.referencesK. Andrzejewski, J. Gonera, P. Kosinski, P. Maslanka, Nucl. Phys. B 876 (2013) 309, arXiv:1305.6805.
dc.referencesN. Aizawa, Z. Kuznetsova, F. Toppan, J. Math. Phys. 54 (2013) 093506, arXiv:1307.5259.
dc.referencesN. Aizawa, Y. Kimura, J. Segar, J. Phys. A 46 (2013) 405204, arXiv:1308.0121.
dc.referencesH. Bacry, J.M. Lévy-Leblond, J. Math. Phys. 9 (1968) 1605.
dc.referencesG.W. Gibbons, C.E. Patricot, Class. Quantum Gravity 20 (2003) 5225, arXiv:hep-th/0308200.
dc.referencesA.M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Birkhauser Verlag, 1990.
dc.referencesK. Andrzejewski, in preparation.
dc.referencesA.V. Smilga, Phys. Lett. B 632 (2006) 433, arXiv:hep-th/0503213.
dc.referencesD. Robert, A.V. Smilga, J. Math. Phys. 49 (2008) 042104, arXiv:math-ph/0611023.
dc.contributor.authorEmailk-andrzejewski@uni.lodz.pl(K.Andrzejewski)
dc.contributor.authorEmailgalajin@tpu.ru(A.Galajinsky)
dc.contributor.authorEmailjgonera@uni.lodz.pl(J.Gonera)
dc.contributor.authorEmailmasterov@tpu.ru (I.Masterov)


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska