Pokaż uproszczony rekord

dc.contributor.authorUrbaniak, Magdalena
dc.date.accessioned2025-02-24T09:40:46Z
dc.date.available2025-02-24T09:40:46Z
dc.date.issued2025-01-01
dc.identifier.urihttp://hdl.handle.net/11089/54727
dc.description.abstractGlobal sewage sludge production is rapidly increasing, and its safe disposal is becoming an increasingly serious issue. One of the main methods of municipal sewage sludge management is based on its agricultural use. The wastewater and sewage sludge contain numerous antibiotic resistance genes (ARGs), and its microbiome differs significantly from the soil microbial community. The aim of the study was to assess the changes occurring in the soil microbial community and resistome after the addition of sewage sludge from municipal wastewater treatment plant (WWTP) in central Poland, from which the sludge is used for fertilizing agricultural soils on a regular basis. This study used a high-throughput shotgun metagenomics approach to compare the microbial communities and ARGs present in two soils fertilized with sewage sludge. The two soils represented different land uses and different physicochemical and granulometric properties. Both soils were characterized by a similar taxonomic composition of the bacterial community, despite dissimilarities between soils properties. Five phyla predominated, viz. Planctomycetes, Actinobacteria, Proteobacteria, Chloroflexi and Firmicutes, and they were present in comparable proportions in both soils. Network analysis revealed that the application of sewage sludge resulted in substantial qualitative and quantitative changes in bacterial taxonomic profile, with most abundant phyla being considerably depleted and replaced by Proteobacteria and Spirochaetes. In addition, the ratio of oligotrophic to copiotrophic bacteria substantially decreased in both amended soils. Furthermore, fertilized soils demonstrated greater diversity and richness of ARGs compared to control soils. The increased abundance concerned mainly genes of resistance to antibiotics most commonly used in human and animal medicine. The level of heavy metals in sewage sludge was low and did not exceed the standards permitted in Poland for sludge used in agriculture, and their level in fertilized soils was still inconsiderable.pl_PL
dc.description.sponsorshipNational Science Centre, Poland, project No. 2020/39/B/NZ9/01772pl_PL
dc.language.isoen_USpl_PL
dc.rightsCC0 1.0 uniwersalna*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectsewage sludgepl_PL
dc.subjectARGspl_PL
dc.subjectsoilpl_PL
dc.titleData_Sewage sludge fertilization affects microbial community structure and its resistome in agricultural soils (dataset)pl_PL
dc.typeDatasetpl_PL
dc.rights.holderMagdalena Urbaniakpl_PL
dc.contributor.authorAffiliationUNESCO Chair on Ecohydrology and Applied Ecologypl_PL
dc.contributor.authorEmailmagdalena.urbaniak@biol.uni.lodz.plpl_PL
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

  • Dane badawcze | Research Data [32]
    Dane badawcze zebrane w ramach projektów realizowanych na Wydziale Biologii i Ochrony Środowiska | Research data collected as part of projects carried out at the Faculty of Biology and Environmental Protection

Pokaż uproszczony rekord

CC0 1.0 uniwersalna
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako CC0 1.0 uniwersalna