| dc.contributor.author | Matuszewska, Dominika | |
| dc.contributor.author | Kiedrzyńska, Edyta | |
| dc.contributor.author | Kiedrzyński, Marcin | |
| dc.contributor.author | Zalewski, Maciej | |
| dc.date.accessioned | 2025-11-27T09:21:51Z | |
| dc.date.available | 2025-11-27T09:21:51Z | |
| dc.date.issued | 2025-11 | |
| dc.identifier.issn | 0169-7722 | |
| dc.identifier.uri | http://hdl.handle.net/11089/56789 | |
| dc.description.abstract | Due to the environmental threat posed by polycyclic aromatic hydrocarbons (PAHs), these compounds are included on the priority substance lists of both the U.S. EPA and the European Union. Monitoring their sources is therefore crucial for protecting aquatic ecosystems.
This study presents a comprehensive analysis of the PAH content of municipal and industrial wastewater and its transport and distribution along the Pilica River continuum, the largest left-bank tributary of the Vistula River. The highest PAH loads to the Pilica River were discharged by class IV municipal wastewater treatment plants (WWTPs); this was related to the volume of WWTP outflow, and the composition of treated wastewater, which was dominated by phenanthrene (PHE), pyrene (PYR) and naphthalene (NAP). Among industrial sources, the fruit and vegetable processing sector contributed the most PAHs, while the furniture sector showed the greatest variation in PAH composition.
Despite the large PAH loads carried along the Pilica river continuum, none of the identified concentrations in the tested samples exceeded the standards contained in Directive 2013/39/EU of the European Parliament and Council. Furthermore, among all sample types, the emission of PAH loads peaked in the autumn-winter period; the samples also demonstrated common correlation patterns, indicating common sources and similar environmental properties.
A key innovation of the study is its holistic approach, i.e. it treats the entire river basin as a unified research system. This perspective enables better understanding of PAH transport, retention, and degradation processes, which are essential for assessing ecological risk and developing effective pollution management strategies. | pl_PL |
| dc.description.sponsorship | The research was conducted as part of the Farmikro Project, funded entirely by the National Science Centre, Poland, Opus 22 (Project No. 2021/43/B/ST10/01076). | pl_PL |
| dc.language.iso | en_US | pl_PL |
| dc.publisher | Elsevier | pl_PL |
| dc.relation.ispartofseries | Journal of Contaminant Hydrology;104781 | |
| dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | PAHs | pl_PL |
| dc.subject | municipal wastewater treatment plants | pl_PL |
| dc.subject | industrial plants | pl_PL |
| dc.subject | Pilica River catchment | pl_PL |
| dc.subject | Ecohydrology | pl_PL |
| dc.subject | wastewater | pl_PL |
| dc.title | Polycyclic Aromatic Hydrocarbons: Impact of municipal and industrial wastewater on river catchment water quality | pl_PL |
| dc.type | Preprint | pl_PL |
| dc.page.number | 61 | pl_PL |
| dc.contributor.authorAffiliation | University of Lodz, Doctoral School of Exact and Natural Sciences, Jana Matejki 21/23, 90-237 Lodz, Poland | pl_PL |
| dc.contributor.authorAffiliation | European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland | pl_PL |
| dc.contributor.authorAffiliation | University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland | pl_PL |
| dc.contributor.authorAffiliation | University of Lodz, Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature Conservation, Banacha 1/3, 90-237 Lodz, Poland | pl_PL |
| dc.identifier.eissn | 1873-6009 | |
| dc.references | 1. Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian journal of petroleum, 25(1), 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011 | pl_PL |
| dc.references | 2. Alwan, S. W. (2016). Efficiency of the Phragmites australis and Typha domingensis roots in remediation of polycyclic aromatic hydrocarbons (PAHs) from freshwater sediments. Iraqi Journal of Agricultural Sciences, 47(2). DOI:10.36103/ijas.v47i2.612 | pl_PL |
| dc.references | 3. Amirdivani, S., Khorshidian, N., Ghobadi Dana, M., Mohammadi, R., Mortazavian, A. M., Quiterio de Souza, S. L., Rocha H.B. & Raices, R. (2019). Polycyclic aromatic hydrocarbons in milk and dairy products. International Journal of Dairy Technology, 72(1), 120-131. https://doi.org/10.1111/1471-0307.12567 | pl_PL |
| dc.references | 4. Barbosa Jr, F., Rocha, B. A., Souza, M. C., Bocato, M. Z., Azevedo, L. F., Adeyemi, J. A., Santana, A. & Campiglia, A. D. (2023). Polycyclic aromatic hydrocarbons (PAHs): updated aspects of their determination, kinetics in the human body, and toxicity. Journal of Toxicology and Environmental Health, Part B, 26(1), 28-65. https://doi.org/10.1080/10937404.2022.2164390 | pl_PL |
| dc.references | 5. Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46, 7-21. https://doi.org/10.1590/S1517-838246120131354 | pl_PL |
| dc.references | 6. Bodzek, D., Luks-Betlej, K., Warzecha, L., 1993. Determination of particle-associated polycyclic aromatic hydrocarbons in ambient air samples from the Upper Silesia region of Poland. Atmos. Environ. 27A, 759e764. https://doi.org/10.1016/0960-1686(93)90193-3 | pl_PL |
| dc.references | 7. Bojakowska, I. (2003). Charakterystyka wielopierścieniowych węglowodorów aromatycznych i ich występowanie w środowisku. Biuletyn Państwowego Instytutu Geologicznego. 405(405). 5-28. | pl_PL |
| dc.references | 8. Bourhane, Z., Lanzén, A., Cagnon, C., Said, O. B., Mahmoudi, E., Coulon, F., ... & Duran, R. (2022). Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. Journal of Hazardous Materials, 421, 126789. https://doi.org/10.1016/j.jhazmat.2021.126789 | pl_PL |
| dc.references | 9. Bruschweiler, E. D., Danuser, B., Huynh, C. K., Wild, P., Schupfer, P., Vernez, D., Boiteux P. & Hopf, N. B. (2012). Generation of polycyclic aromatic hydrocarbons (PAHs) during woodworking operations. Frontiers in oncology, 2, 148. doi: 10.3389/fonc.2012.00148 | pl_PL |
| dc.references | 10. Cai, H., Sun, L., Wang, Y., Song, T., Bao, M., & Yang, X. (2019). Unprecedented efficient degradation of phenanthrene in water by intimately coupling novel ternary composite Mn3O4/MnO2-Ag3PO4 and functional bacteria under visible light irradiation. Chemical Engineering Journal. 369. 1078-1092. https://doi.org/10.1016/j.cej.2019.03.143 | pl_PL |
| dc.references | 11. Caliskan, B., Kücük, A., Tasdemir, Y., & Cindoruk, S. S. (2020). PAH levels in a furniture-manufacturing city atmosphere. Chemosphere, 240, 124757. https://doi.org/10.1016/j.chemosphere.2019.124757 | pl_PL |
| dc.references | 12. Commission Directive 2009/90/EC of 31 July 2009 establishing, under Directive 2000/60/EC of the European Parliament and of the Council, technical specifications for the analysis and monitoring of chemical water. | pl_PL |
| dc.references | 13. European Union (EU). (1991). Council Directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment. (1991). Official Journal of the European Communities, L 135, 40–52. | pl_PL |
| dc.references | 14. European Union (EU). (2000). Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October, 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, 43(L 327), 1–51. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2000:327:FUL | pl_PL |
| dc.references | 15. European Union (EU). (2013). Council Directive 2 013/39/EU of the European Parliament and of the Council of 12 August, 2013; amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, 56(L 226), 1–17. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:en:PDF | pl_PL |
| dc.references | 16. European Union (EU). European Parliament and Council. (2024). Directive (EU) 2024/3019 of 27 November 2024 on urban wastewater treatment. Official Journal of the European Union, L 324, pp. 1–25. | pl_PL |
| dc.references | 17. Feng, T. C., Cui, C. Z., Dong, ,F., Feng,Y. Y.. Liu, Y. D., & Yang, X. M. (2012). Phenanthrene biodegradation by halophilic Martelella sp. AD‐3. Journal of applied microbiology. 113(4). 779-789. https://doi.org/10.1111/j.1365-2672.2012.05386.x | pl_PL |
| dc.references | 18. Feng, J., Shen, Z., Niu, J., & Yang, Z. (2008). The role of sediment resuspension duration in release of PAHs. Chinese Science Bulletin, 53(18), 2777-2782. https://doi.org/10.1007/s11434-008-0389-z | pl_PL |
| dc.references | 19. Froehner, S., Rizzi, J., Vieira, L. M., & Sanez, J. (2018). PAHs in water, sediment and biota in an area with port activities. Archives of environmental contamination and toxicology, 75, 236-246. https://doi.org/10.1007/s00244-018-0538-6 | pl_PL |
| dc.references | 20. Gaurav, G. K., Mehmood, T., Kumar, M., Cheng, L., Sathishkumar, K., Kumar, A., & Yadav, D. (2021). Review on polycyclic aromatic hydrocarbons (PAHs) migration from wastewater. Journal of contaminant hydrology, 236, 103715. https://doi.org/10.1016/j.jconhyd.2020.103715 | pl_PL |
| dc.references | 21. Gracia-Lor, E., Zuccato, E., Hernández, F., & Castiglioni, S. (2020). Wastewater-based epidemiology for tracking human exposure to mycotoxins. Journal of hazardous materials, 382, 121108. https://doi.org/10.1016/j.jhazmat.2019.121108 | pl_PL |
| dc.references | 22. Grmasha, R. A., Stenger-Kovács, C., Al-Sareji, O. J., Al-Juboori, R. A., Meiczinger, M., Andredaki, M., ... & Al-Ansari, N. (2024). Temporal and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in the Danube River in Hungary. Scientific reports, 14(1), 8318. https://doi.org/10.1038/s41598-024-58793-2 | pl_PL |
| dc.references | 23. Gupte, A., Tripathi, A., Patel, H., Rudakiya, D., & Gupte, S. (2016). Bioremediation of polycyclic aromatic hydrocarbon (PAHs): a perspective. Open Biotechnol. J. 10: 363–378. DOI: 10.2174/1874070701610010363 | pl_PL |
| dc.references | 24. He, Y., & Chi, J. (2016). Phytoremediation of sediments polluted with phenanthrene and pyrene by four submerged aquatic plants. Journal of Soils and Sediments, 16, 309-317. https://doi.org/10.1007/s11368-015-1221-4 | pl_PL |
| dc.references | 25. HELCOM (2018) PAH and metabolites. HELCOM core indicator report. Online. 09.06.2025, https://indicators.helcom.fi/indicator/pahs-and-metabolites/ | pl_PL |
| dc.references | 26. Huang, Y., Sui, Q., Lyu, S., Wang, J., Huang, S., Zhao, W., Wang B., Xu D., Kong M., Zhang Y. & Yu, G. (2020). Tracking emission sources of PAHs in a region with pollution-intensive industries, Taihu Basin: From potential pollution sources to surface water. Environmental Pollution, 264, 114674. https://doi.org/10.1016/j.envpol.2020.114674 | pl_PL |
| dc.references | 27. Hui, K., Xi, B., Tan, W., & Song, Q. (2022a). Long-term application of nitrogen fertilizer alters the properties of dissolved soil organic matter and increases the accumulation of polycyclic aromatic hydrocarbons. Environmental research, 215, 114267. https://doi.org/10.1016/j.envres.2022.114267 | pl_PL |
| dc.references | 28. Hui, K., Kou, B., Jiang, Y., Wu, Y., Xu, Q., & Tan, W. (2022b). Nitrogen addition increases the ecological and human health risks of PAHs in different fractions of soil in sewage-irrigated area. Science of The Total Environment, 811, 151420 https://doi.org/10.1016/j.scitotenv.2021.151420 | pl_PL |
| dc.references | 29. Iwasaki, K., Ozaki, N., Kojima, K., & Kindaichi, T. (2009). Estimation of river discharge loadings of PAHs in a suburban river in Hiroshima Prefecture, Japan. Journal of Water and Environment Technology, 7(2), 109-120. https://doi.org/10.2965/jwet.2009.109 | pl_PL |
| dc.references | 30. Izydorczyk, K., Piniewski, M., Krauze, K., Courseau, L., Czyż, P., Giełczewski, M., Kardel, I., Marcinkowski, P., Szuwart M., Zalewski, M. & Frątczak, W. (2019). The ecohydrological approach, SWAT modelling, and multi-stakeholder engagement–A system solution to diffuse pollution in the Pilica basin, Poland. Journal of Environmental Management, 248, 109329. https://doi.org/10.1016/j.jenvman.2019.109329 | pl_PL |
| dc.references | 31. Kafilzadeh, F., Shiva, A. H., & Malekpour, R. (2011). Determination of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Kor River, Iran. Middle-East journal of scientific research, 10(1), 1-7. http://hdl.handle.net/10072/62775 | pl_PL |
| dc.references | 32. Kannan, K., Kober, J. L., Khim, J. S., Szymczyk, K., Falandysz, J., & Giesy, J. P. (2003). Polychlorinated biphenyls, polycyclic aromatic hydrocarbons and alkylphenols in sediments from the Odra River and its tributaries, Poland. Toxicol. and Environ. Chem., 85(4-6), 51-60. https://doi.org/10.1080/0277221042000 | pl_PL |
| dc.references | 33. Kassambara, A., & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. | pl_PL |
| dc.references | 34. Kiedrzyńska. E., Kiedrzyński. M., Urbaniak. M., Magnuszewski. A., Skłodowski. M., Wyrwicka. A. & Zalewski. M. (2014). Point sources of nutrient pollution in the lowland river catchment in the context of the Baltic Sea eutrophication. Ecological engineering. 70. 337-348. https://doi.org/10.1016/j.ecoleng.2014.06.010 | pl_PL |
| dc.references | 35. Koniuszewska, I., Korzeniewska, E., Harnisz, M., Kiedrzyńska, E., Kiedrzyński, M., Czatzkowska, M., Jarosiewicz P., Zalewski, M. (2020). The occurrence of antibiotic-resistance genes in the Pilica River, Poland. Ecohydrology & Hydrobiology, 20(1), 1-11. https://doi.org/10.1016/j.ecohyd.2019.09.002 | pl_PL |
| dc.references | 36. Koproch, N., Dahmke, A., & Köber, R. (2019). The aqueous solubility of common organic groundwater contaminants as a function of temperature between 5 and 70° C. Chemosphere, 217, 166-175. https://doi.org/10.1016/j.chemosphere.2018.10.153 | pl_PL |
| dc.references | 37. Książek, S., Kida, M., & Koszelnik, P. (2016). The occurrence and source of polycyclic aromatic hydrocarbons in bottom sediments of the Wisłok river. Polish J Natural Sci, 31(3), 373-386. | pl_PL |
| dc.references | 38. Lamichhane, S., Krishna, K. B., & Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere, 148, 336-353. https://doi.org/10.1016/j.chemosphere.2016.01.036 | pl_PL |
| dc.references | 39. Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., & Peng, X. Z. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Science of the Total Environment, 355(1-3), 145-155. https://doi.org/10.1016/j.scitotenv.2005.02.042 | pl_PL |
| dc.references | 40. Li, R., Luo, Y., Zhu, X., Zhang, J., Wang, Z., Yang, W., ... & Li, H. (2024). Anthropogenic impacts on polycyclic aromatic hydrocarbons in surface water: Evidence from the COVID-19 lockdown. Water Research, 262, 122143. https://doi.org/10.1016/j.watres.2024.122143 | pl_PL |
| dc.references | 41. Li, R., Zhang, J., & Krebs, P. (2022). Global trade drives transboundary transfer of the health impacts of polycyclic aromatic hydrocarbon emissions. Communications Earth & Environment, 3(1), 170. https://doi.org/10.1038/s43247-022-00500-y | pl_PL |
| dc.references | 42. Malakahmad, A., Law, M. X., Ng, K. W., & Abd Manan, T. S. (2016). The fate and toxicity assessment of polycyclic aromatic hydrocarbons (PAHs) in water streams of Malaysia. Procedia Engineering, 148, 806-811. https://doi.org/10.1016/j.proeng.2016.06.572 | pl_PL |
| dc.references | 43. Matuszewska, D., Kiedrzyńska, E., Jóźwik, A., & Kiedrzyński, M. (2025). An analysis of catchment factors associated with heavy metal export into the Baltic Sea and Nature-Based Solutions aimed at its limitation. Journal of Hazardous Materials, 138727. https://doi.org/10.1016/j.jhazmat.2025.138727 | pl_PL |
| dc.references | 44. Mawad, A., Albasri, H., Shalkami, A. G., Alamri, S., & Hashem, M. (2021). Synergistic degradation of phenanthrene by constructed Pseudomonas spp. consortium compared with pure strains. Environmental Technology & Innovation. 24. 101942. https://doi.org/10.1016/j.eti.2021.101942 | pl_PL |
| dc.references | 45. Ministry of Infrastructure. (2021). Regulation of the Minister of Infrastructure of 25 June 2021 on the classification of ecological status, ecological potential and chemical status, the method of classifying the status of surface water bodies, and environmental quality standards for priority substances (Journal of Laws 2021, item 1475). | pl_PL |
| dc.references | 46. Moeckel, C., Monteith, D. T., Llewellyn, N. R., Henrys, P. A., & Pereira, M. G. (2014). Relationship between the concentrations of dissolved organic matter and polycyclic aromatic hydrocarbons in a typical UK upland stream. Environmental science & technology, 48(1), 130-138. https://doi.org/10.1021/es403707q | pl_PL |
| dc.references | 47. Moscoso, F., Teijiz, I., Deive, F. J., & Sanromán, M. A. (2012). Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresource technology, 119, 270-276. https://doi.org/10.1016/j.biortech.2012.05.095 | pl_PL |
| dc.references | 48. Murtagh, F., & Legendre, P. (2014). Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion? Journal of Classification, 31, 274–295. https://doi.org/10.1007/s00357-014-9161-z | pl_PL |
| dc.references | 49. Nas, B., Argun, M. E., Dolu, T., Ateş, H., Yel, E., Koyuncu, S., Dinç , S. & Kara, M. (2020). Occurrence, loadings and removal of EU-priority polycyclic aromatic hydrocarbons (PAHs) in wastewater and sludge by advanced biological treatment, stabilization pond and constructed wetland. Journal of environmental management, 268, 110580. https://doi.org/10.1016/j.jenvman.2020.110580 | pl_PL |
| dc.references | 50. Ofman, P., Skoczko, I., & Włodarczyk-Makuła, M. (2021). Biosorption of LMW PAHs on activated sludge aerobic granules under varying BOD loading rate conditions. Journal of Hazardous Materials, 418, 126332. https://doi.org/10.1016/j.jhazmat.2021.126332 | pl_PL |
| dc.references | 51. Ozaki, N., Takamura, Y., Kojima, K., & Kindaichi, T. (2015). Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system. Water Research, 80, 337-345. https://doi.org/10.1016/j.watres.2015.05.002 | pl_PL |
| dc.references | 52. Paris, A., Ledauphin, J., Poinot, P., & Gaillard, J. L. (2018). Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environmental Pollution, 234, 96-106. https://doi.org/10.1016/j.envpol.2017.11.028 | pl_PL |
| dc.references | 53. Patel, A. B., Singh, S., Patel, A., Jain, K., Amin, S., & Madamwar, D. (2019). Synergistic biodegradation of phenanthrene and fluoranthene by mixed bacterial cultures. Bioresource technology. 284. 115-120. https://doi.org/10.1016/j.biortech.2019.03.097 | pl_PL |
| dc.references | 54. Patrolecco, L., Ademollo, N., Capri, S., Pagnotta, R., & Polesello, S. (2010). Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere, 81(11), 1386-1392. https://doi.org/10.1016/j.chemosphere.2010.09.027 | pl_PL |
| dc.references | 55. Paudel, B., Montagna, P. A., & Adams, L. (2019). The relationship between suspended solids and nutrients with variable hydrologic flow regimes. Regional Studies in Marine Science, 29, 100657. https://doi.org/10.1016/j.rsma.2019.100657 | pl_PL |
| dc.references | 56. Piwowarska, D., & Kiedrzyńska, E. (2022). Xenobiotics as a contemporary threat to surface waters. Ecohydrology & Hydrobiology. 22(2). 337-354. https://doi.org/10.1016/j.ecohyd.2021.09.003 | pl_PL |
| dc.references | 57. Qiao, M., Qi, W., Liu, H., & Qu, J. (2014). Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: Occurrence, possible formation, and source and fate in a water-shortage area. Science of the Total Environment, 481, 178-185. https://doi.org/10.1016/j.scitotenv.2014.02.050 | pl_PL |
| dc.references | 58. R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria | pl_PL |
| dc.references | 59. Rizzi, C., Villa, S., Waichman, A. V., de Souza Nunes, G. S., de Oliveira, R., Vighi, M., & Rico, A. (2023). Occurrence, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the Amazon river. Chemosphere, 336, 139285. https://doi.org/10.1016/j.chemosphere.2023.139285 | pl_PL |
| dc.references | 60. Samsøe-Petersen, L., Larsen, E. H., Larsen, P. B., & Bruun, P. (2002). Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environmental science & technology, 36(14), 3057-3063. | pl_PL |
| dc.references | 61. Sharma, B. M., Melymuk. L., Bharat, G. K., Přibylová, P., Sáňka, O., Klánová, J., & Nizzetto. L. (2018). Spatial gradients of polycyclic aromatic hydrocarbons (PAHs) in air. atmospheric deposition. and surface water of the Ganges River basin. Science of the Total Environment. 627. 1495-1504. https://doi.org/10.1016/j.scitotenv.2018.01.262 | pl_PL |
| dc.references | 62. Sharma, A., Singh, S. B., Sharma, R., Chaudhary, P., Pandey, A. K., Ansari, R., Vasudevan V., Arora A., Singh S., Saha S. & Nain, L. (2016). Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. Journal of Environmental Management, 181, 728-736. https://doi.org/10.1016/j.jenvman.2016.08.024 | pl_PL |
| dc.references | 63. Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., ... & Tao, S. (2013). Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental science & technology, 47(12), 6415-6424. DOI: 10.1021/es400857z | pl_PL |
| dc.references | 64. Shi, Z., Tao, S., Pan, B., Fan, W., He, X. C., Zuo, Q., Wu S.P., Li B.G., Cao J., Liu W.X., Xu F.L., Wang X.J., Shen W.R. & Wong, P. K. (2005). Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 134(1), 97-111. https://doi.org/10.1016/j.envpol.2004.07.014 | pl_PL |
| dc.references | 65. Shoaei, F., Talebi-Ghane, E., Amirsadeghi, S., & Mehri, F. (2023). The investigation of polycyclic aromatic hydrocarbons (PAHs) in milk and its products: A global systematic review, meta-analysis and health risk assessment. International Dairy Journal, 142, 105645. https://doi.org/10.1016/j.idairyj.2023.105645 | pl_PL |
| dc.references | 66. Slowikowski, K., Schep, A., Hughes, S., Lukauskas, S., Irisson, J.-O., Kamvar, Z. N., … Rojas, E. (2021). ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. R package version 0.9.1. | pl_PL |
| dc.references | 67. Smol, M., Włodarczyk-Makuła, M., & Skowron-Grabowska, B. (2017). PAHs removal from municipal landfill leachate using an integrated membrane system in aspect of legal regulations. Desalination and Water Treatment, 69, 335-343 https://doi.org/10.5004/dwt.2017.20241 | pl_PL |
| dc.references | 68. Smol, M., & Włodarczyk-Makuła, M. (2017). The effectiveness in the removal of PAHs from aqueous solutions in physical and chemical processes: a review. Polycyclic Aromatic Compounds, 37(4), 292-313. https://doi.org/10.1080/10406638.2015.1105828 | pl_PL |
| dc.references | 69. Sukhdhane, K. S., Pandey, P. K., Ajima, M. N. O., Jayakumar. T., Vennila, A., & Raut, S. M. (2019). Isolation and characterization of phenanthrene-degrading bacteria from PAHs contaminated mangrove sediment of Thane Creek in Mumbai. India. Polycyclic Aromatic Compounds. 39(1). 73-83. https://doi.org/10.1080/10406638.2016.1261911 | pl_PL |
| dc.references | 70. Szklarek S., Kiedrzyńska E., Kiedrzyński M., Mankiewicz-Boczek J., Mitsch W.J. & Zalewski M. (2021). Comparing ecotoxicological and physicochemical indicators of municipal wastewater effluent and river water quality in a Baltic Sea catchment in Poland. Ec. Ind.. 126. 107611. https://doi.org/10.1016/j.ecolind.2021.107611 | pl_PL |
| dc.references | 71. The United Nations Human Settlements Programme (UN-Habitat) and the World Health Organization (WHO), 2024. Progress on the proportion of domestic and industrial wastewater flows safely treated – Mid-term status of SDG Indicator 6.3.1 and acceleration needs, with a special focus on climate change, wastewater reuse and health. United Nations Human Settlements Programme (UN-Habitat) and World Health Organization (WHO), 2024. Licence: CC BY-NC-SA 3.0 IGO. | pl_PL |
| dc.references | 72. Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental pollution, 162, 110-119. https://doi.org/10.1016/j.envpol.2011.10.025 | pl_PL |
| dc.references | 73. Tongo, I., Ezemonye, L., & Akpeh, K. (2017). Levels, distribution and characterization of polycyclic aromatic hydrocarbons (PAHs) in Ovia river, Southern Nigeria. Journal of Environmental Chemical Engineering, 5(1), 504-512. https://doi.org/10.1016/j.jece.2016.12.035 | pl_PL |
| dc.references | 74. Torretta, V. (2012). PAHs in wastewater: Removal efficiency in a conventional wastewater treatment plant and comparison with model predictions. Environmental technology, 33(8), 851-855. https://doi.org/10.1080/09593330.2011.599430 | pl_PL |
| dc.references | 75. Tremblay, L., Kohl, S. D., Rice, J. A., & Gagné, J. P. (2005). Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles. Marine Chemistry, 96(1-2), 21-34. https://doi.org/10.1016/j.marchem.2004.10.004 | pl_PL |
| dc.references | 76. United Nations Environment Programme (2023). Wastewater – Turning Problem to Solution. A UNEP Rapid Response Assessment. Nairobi. DOI: https://doi.org/10.59117/20.500.11822/43142 | pl_PL |
| dc.references | 77. United States Congress. (1972). Federal Water Pollution Control Act Amendments of 1972, Pub. L. No. 92–500, 86 Stat. 816 (commonly known as the Clean Water Act). | pl_PL |
| dc.references | 78. United States EPA. Drinking Water Criteria Document for Polycyclic Aromatic Hydrocarbons (PAH) (1991). U.S. Environmental Protection Agency, Washington, D.C., ECAO-CIN-D010 (NTIS PB86117801), 1991. | pl_PL |
| dc.references | 79. Urbaniak, M., Kiedrzynska, E., Kiedrzyński, M., Mendra, M., Grochowalski A. (2014). The impact of point sources of pollution on the transport of micropollutants along the river continuum. Hydr. Res.. 45(3). 391-410. https://doi.org/10.2166/nh.2013.242 | pl_PL |
| dc.references | 80. Verâne, J., Dos Santos, N. C., da Silva, V. L., de Almeida, M., de Oliveira, O. M., & Moreira, Í. T. (2020). Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Marine Pollution Bulletin, 160, 111687. https://doi.org/10.1016/j.marpolbul.2020.111687 | pl_PL |
| dc.references | 81. Wei, T., & Simko, V. (2021). corrplot: Visualization of a Correlation Matrix. R package version 0.92. | pl_PL |
| dc.references | 82. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. | pl_PL |
| dc.references | 83. Wickham, H., Hester, J., & Bryan, J. (2023). readr: Read Rectangular Text Data. R package version 2.1.4. | pl_PL |
| dc.references | 84. Włodarczyk-Makuła, M. (2005). The loads of PAHs in wastewater and sewage sludge of municipal treatment plant. Polycyclic Aromatic Compounds, 25(2), 183-194 https://doi.org/10.1080/10406630590930743 | pl_PL |
| dc.references | 85. Xia, X. H., Yu, H., Yang, Z. F., & Huang, G. H. (2006). Biodegradation of polycyclic aromatic hydrocarbons in the natural waters of the Yellow River: Effects of high sediment content on biodegradation. Chemosphere, 65(3), 457-466. https://doi.org/10.1016/j.chemosphere.2006.01.075 | pl_PL |
| dc.references | 86. Xu, M., Wu, M., Zhang, Y., Zhang, H., Liu, W., Chen, G., Xiong G., & Guo, L. (2022). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial mixture. International Journal of Environmental Science and Technology, 1-12. https://doi.org/10.1007/s13762-021-03284-4 | pl_PL |
| dc.references | 87. Zhang, X., Yu, T., Li, X., Yao, J., Liu, W., Chang, S., & Chen, Y. (2019). The fate and enhanced removal of polycyclic aromatic hydrocarbons in wastewater and sludge treatment system: A review. Critical Reviews in Environmental Science and Technology, 49(16), 1425-1475. https://doi.org/10.1080/10643389.2019.1579619 | pl_PL |
| dc.references | 88. Zhang, L., Qiu, X., Huang, L., Xu, J., Wang, W., Li, Z., Xu P., & Tang, H. (2021). Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater. Journal of Hazardous Materials, 419, 126524. https://doi.org/10.1016/j.jhazmat.2021.126524 | pl_PL |
| dc.references | 89. Zhang, L., Yang, B., Qu, C., Chen, G., Qi, F., Yu, T., & Mustapha, A. (2022). Construction and degradation performance study of polycyclic aromatic hydrocarbons (PAHs) degrading bacterium consortium. Applied Sciences, 12(5), 2354. https://doi.org/10.3390/app12052354 | pl_PL |
| dc.contributor.authorEmail | * d.matuszewska@erce.unesco.lodz.pl **e.kiedrzynska@erce.unesco.lodz.pl | pl_PL |
| dc.identifier.doi | 10.1016/j.jconhyd.2025.104781 | |
| dc.relation.volume | 276 | pl_PL |
| dc.discipline | nauki biologiczne | pl_PL |
| dc.discipline | nauki o Ziemi i środowisku | pl_PL |