Pokaż uproszczony rekord

dc.contributor.authorMatuszewska, Dominika
dc.contributor.authorKiedrzyńska, Edyta
dc.contributor.authorKiedrzyński, Marcin
dc.contributor.authorZalewski, Maciej
dc.date.accessioned2025-11-27T09:21:51Z
dc.date.available2025-11-27T09:21:51Z
dc.date.issued2025-11
dc.identifier.issn0169-7722
dc.identifier.urihttp://hdl.handle.net/11089/56789
dc.description.abstractDue to the environmental threat posed by polycyclic aromatic hydrocarbons (PAHs), these compounds are included on the priority substance lists of both the U.S. EPA and the European Union. Monitoring their sources is therefore crucial for protecting aquatic ecosystems. This study presents a comprehensive analysis of the PAH content of municipal and industrial wastewater and its transport and distribution along the Pilica River continuum, the largest left-bank tributary of the Vistula River. The highest PAH loads to the Pilica River were discharged by class IV municipal wastewater treatment plants (WWTPs); this was related to the volume of WWTP outflow, and the composition of treated wastewater, which was dominated by phenanthrene (PHE), pyrene (PYR) and naphthalene (NAP). Among industrial sources, the fruit and vegetable processing sector contributed the most PAHs, while the furniture sector showed the greatest variation in PAH composition. Despite the large PAH loads carried along the Pilica river continuum, none of the identified concentrations in the tested samples exceeded the standards contained in Directive 2013/39/EU of the European Parliament and Council. Furthermore, among all sample types, the emission of PAH loads peaked in the autumn-winter period; the samples also demonstrated common correlation patterns, indicating common sources and similar environmental properties. A key innovation of the study is its holistic approach, i.e. it treats the entire river basin as a unified research system. This perspective enables better understanding of PAH transport, retention, and degradation processes, which are essential for assessing ecological risk and developing effective pollution management strategies.pl_PL
dc.description.sponsorshipThe research was conducted as part of the Farmikro Project, funded entirely by the National Science Centre, Poland, Opus 22 (Project No. 2021/43/B/ST10/01076).pl_PL
dc.language.isoen_USpl_PL
dc.publisherElsevierpl_PL
dc.relation.ispartofseriesJournal of Contaminant Hydrology;104781
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPAHspl_PL
dc.subjectmunicipal wastewater treatment plantspl_PL
dc.subjectindustrial plantspl_PL
dc.subjectPilica River catchmentpl_PL
dc.subjectEcohydrologypl_PL
dc.subjectwastewaterpl_PL
dc.titlePolycyclic Aromatic Hydrocarbons: Impact of municipal and industrial wastewater on river catchment water qualitypl_PL
dc.typePreprintpl_PL
dc.page.number61pl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Doctoral School of Exact and Natural Sciences, Jana Matejki 21/23, 90-237 Lodz, Polandpl_PL
dc.contributor.authorAffiliationEuropean Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Polandpl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Polandpl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature Conservation, Banacha 1/3, 90-237 Lodz, Polandpl_PL
dc.identifier.eissn1873-6009
dc.references1. Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian journal of petroleum, 25(1), 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011pl_PL
dc.references2. Alwan, S. W. (2016). Efficiency of the Phragmites australis and Typha domingensis roots in remediation of polycyclic aromatic hydrocarbons (PAHs) from freshwater sediments. Iraqi Journal of Agricultural Sciences, 47(2). DOI:10.36103/ijas.v47i2.612pl_PL
dc.references3. Amirdivani, S., Khorshidian, N., Ghobadi Dana, M., Mohammadi, R., Mortazavian, A. M., Quiterio de Souza, S. L., Rocha H.B. & Raices, R. (2019). Polycyclic aromatic hydrocarbons in milk and dairy products. International Journal of Dairy Technology, 72(1), 120-131. https://doi.org/10.1111/1471-0307.12567pl_PL
dc.references4. Barbosa Jr, F., Rocha, B. A., Souza, M. C., Bocato, M. Z., Azevedo, L. F., Adeyemi, J. A., Santana, A. & Campiglia, A. D. (2023). Polycyclic aromatic hydrocarbons (PAHs): updated aspects of their determination, kinetics in the human body, and toxicity. Journal of Toxicology and Environmental Health, Part B, 26(1), 28-65. https://doi.org/10.1080/10937404.2022.2164390pl_PL
dc.references5. Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46, 7-21. https://doi.org/10.1590/S1517-838246120131354pl_PL
dc.references6. Bodzek, D., Luks-Betlej, K., Warzecha, L., 1993. Determination of particle-associated polycyclic aromatic hydrocarbons in ambient air samples from the Upper Silesia region of Poland. Atmos. Environ. 27A, 759e764. https://doi.org/10.1016/0960-1686(93)90193-3pl_PL
dc.references7. Bojakowska, I. (2003). Charakterystyka wielopierścieniowych węglowodorów aromatycznych i ich występowanie w środowisku. Biuletyn Państwowego Instytutu Geologicznego. 405(405). 5-28.pl_PL
dc.references8. Bourhane, Z., Lanzén, A., Cagnon, C., Said, O. B., Mahmoudi, E., Coulon, F., ... & Duran, R. (2022). Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. Journal of Hazardous Materials, 421, 126789. https://doi.org/10.1016/j.jhazmat.2021.126789pl_PL
dc.references9. Bruschweiler, E. D., Danuser, B., Huynh, C. K., Wild, P., Schupfer, P., Vernez, D., Boiteux P. & Hopf, N. B. (2012). Generation of polycyclic aromatic hydrocarbons (PAHs) during woodworking operations. Frontiers in oncology, 2, 148. doi: 10.3389/fonc.2012.00148pl_PL
dc.references10. Cai, H., Sun, L., Wang, Y., Song, T., Bao, M., & Yang, X. (2019). Unprecedented efficient degradation of phenanthrene in water by intimately coupling novel ternary composite Mn3O4/MnO2-Ag3PO4 and functional bacteria under visible light irradiation. Chemical Engineering Journal. 369. 1078-1092. https://doi.org/10.1016/j.cej.2019.03.143pl_PL
dc.references11. Caliskan, B., Kücük, A., Tasdemir, Y., & Cindoruk, S. S. (2020). PAH levels in a furniture-manufacturing city atmosphere. Chemosphere, 240, 124757. https://doi.org/10.1016/j.chemosphere.2019.124757pl_PL
dc.references12. Commission Directive 2009/90/EC of 31 July 2009 establishing, under Directive 2000/60/EC of the European Parliament and of the Council, technical specifications for the analysis and monitoring of chemical water.pl_PL
dc.references13. European Union (EU). (1991). Council Directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment. (1991). Official Journal of the European Communities, L 135, 40–52.pl_PL
dc.references14. European Union (EU). (2000). Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October, 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, 43(L 327), 1–51. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2000:327:FULpl_PL
dc.references15. European Union (EU). (2013). Council Directive 2 013/39/EU of the European Parliament and of the Council of 12 August, 2013; amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, 56(L 226), 1–17. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:en:PDFpl_PL
dc.references16. European Union (EU). European Parliament and Council. (2024). Directive (EU) 2024/3019 of 27 November 2024 on urban wastewater treatment. Official Journal of the European Union, L 324, pp. 1–25.pl_PL
dc.references17. Feng, T. C., Cui, C. Z., Dong, ,F., Feng,Y. Y.. Liu, Y. D., & Yang, X. M. (2012). Phenanthrene biodegradation by halophilic Martelella sp. AD‐3. Journal of applied microbiology. 113(4). 779-789. https://doi.org/10.1111/j.1365-2672.2012.05386.xpl_PL
dc.references18. Feng, J., Shen, Z., Niu, J., & Yang, Z. (2008). The role of sediment resuspension duration in release of PAHs. Chinese Science Bulletin, 53(18), 2777-2782. https://doi.org/10.1007/s11434-008-0389-zpl_PL
dc.references19. Froehner, S., Rizzi, J., Vieira, L. M., & Sanez, J. (2018). PAHs in water, sediment and biota in an area with port activities. Archives of environmental contamination and toxicology, 75, 236-246. https://doi.org/10.1007/s00244-018-0538-6pl_PL
dc.references20. Gaurav, G. K., Mehmood, T., Kumar, M., Cheng, L., Sathishkumar, K., Kumar, A., & Yadav, D. (2021). Review on polycyclic aromatic hydrocarbons (PAHs) migration from wastewater. Journal of contaminant hydrology, 236, 103715. https://doi.org/10.1016/j.jconhyd.2020.103715pl_PL
dc.references21. Gracia-Lor, E., Zuccato, E., Hernández, F., & Castiglioni, S. (2020). Wastewater-based epidemiology for tracking human exposure to mycotoxins. Journal of hazardous materials, 382, 121108. https://doi.org/10.1016/j.jhazmat.2019.121108pl_PL
dc.references22. Grmasha, R. A., Stenger-Kovács, C., Al-Sareji, O. J., Al-Juboori, R. A., Meiczinger, M., Andredaki, M., ... & Al-Ansari, N. (2024). Temporal and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in the Danube River in Hungary. Scientific reports, 14(1), 8318. https://doi.org/10.1038/s41598-024-58793-2pl_PL
dc.references23. Gupte, A., Tripathi, A., Patel, H., Rudakiya, D., & Gupte, S. (2016). Bioremediation of polycyclic aromatic hydrocarbon (PAHs): a perspective. Open Biotechnol. J. 10: 363–378. DOI: 10.2174/1874070701610010363pl_PL
dc.references24. He, Y., & Chi, J. (2016). Phytoremediation of sediments polluted with phenanthrene and pyrene by four submerged aquatic plants. Journal of Soils and Sediments, 16, 309-317. https://doi.org/10.1007/s11368-015-1221-4pl_PL
dc.references25. HELCOM (2018) PAH and metabolites. HELCOM core indicator report. Online. 09.06.2025, https://indicators.helcom.fi/indicator/pahs-and-metabolites/pl_PL
dc.references26. Huang, Y., Sui, Q., Lyu, S., Wang, J., Huang, S., Zhao, W., Wang B., Xu D., Kong M., Zhang Y. & Yu, G. (2020). Tracking emission sources of PAHs in a region with pollution-intensive industries, Taihu Basin: From potential pollution sources to surface water. Environmental Pollution, 264, 114674. https://doi.org/10.1016/j.envpol.2020.114674pl_PL
dc.references27. Hui, K., Xi, B., Tan, W., & Song, Q. (2022a). Long-term application of nitrogen fertilizer alters the properties of dissolved soil organic matter and increases the accumulation of polycyclic aromatic hydrocarbons. Environmental research, 215, 114267. https://doi.org/10.1016/j.envres.2022.114267pl_PL
dc.references28. Hui, K., Kou, B., Jiang, Y., Wu, Y., Xu, Q., & Tan, W. (2022b). Nitrogen addition increases the ecological and human health risks of PAHs in different fractions of soil in sewage-irrigated area. Science of The Total Environment, 811, 151420 https://doi.org/10.1016/j.scitotenv.2021.151420pl_PL
dc.references29. Iwasaki, K., Ozaki, N., Kojima, K., & Kindaichi, T. (2009). Estimation of river discharge loadings of PAHs in a suburban river in Hiroshima Prefecture, Japan. Journal of Water and Environment Technology, 7(2), 109-120. https://doi.org/10.2965/jwet.2009.109pl_PL
dc.references30. Izydorczyk, K., Piniewski, M., Krauze, K., Courseau, L., Czyż, P., Giełczewski, M., Kardel, I., Marcinkowski, P., Szuwart M., Zalewski, M. & Frątczak, W. (2019). The ecohydrological approach, SWAT modelling, and multi-stakeholder engagement–A system solution to diffuse pollution in the Pilica basin, Poland. Journal of Environmental Management, 248, 109329. https://doi.org/10.1016/j.jenvman.2019.109329pl_PL
dc.references31. Kafilzadeh, F., Shiva, A. H., & Malekpour, R. (2011). Determination of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Kor River, Iran. Middle-East journal of scientific research, 10(1), 1-7. http://hdl.handle.net/10072/62775pl_PL
dc.references32. Kannan, K., Kober, J. L., Khim, J. S., Szymczyk, K., Falandysz, J., & Giesy, J. P. (2003). Polychlorinated biphenyls, polycyclic aromatic hydrocarbons and alkylphenols in sediments from the Odra River and its tributaries, Poland. Toxicol. and Environ. Chem., 85(4-6), 51-60. https://doi.org/10.1080/0277221042000pl_PL
dc.references33. Kassambara, A., & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7.pl_PL
dc.references34. Kiedrzyńska. E., Kiedrzyński. M., Urbaniak. M., Magnuszewski. A., Skłodowski. M., Wyrwicka. A. & Zalewski. M. (2014). Point sources of nutrient pollution in the lowland river catchment in the context of the Baltic Sea eutrophication. Ecological engineering. 70. 337-348. https://doi.org/10.1016/j.ecoleng.2014.06.010pl_PL
dc.references35. Koniuszewska, I., Korzeniewska, E., Harnisz, M., Kiedrzyńska, E., Kiedrzyński, M., Czatzkowska, M., Jarosiewicz P., Zalewski, M. (2020). The occurrence of antibiotic-resistance genes in the Pilica River, Poland. Ecohydrology & Hydrobiology, 20(1), 1-11. https://doi.org/10.1016/j.ecohyd.2019.09.002pl_PL
dc.references36. Koproch, N., Dahmke, A., & Köber, R. (2019). The aqueous solubility of common organic groundwater contaminants as a function of temperature between 5 and 70° C. Chemosphere, 217, 166-175. https://doi.org/10.1016/j.chemosphere.2018.10.153pl_PL
dc.references37. Książek, S., Kida, M., & Koszelnik, P. (2016). The occurrence and source of polycyclic aromatic hydrocarbons in bottom sediments of the Wisłok river. Polish J Natural Sci, 31(3), 373-386.pl_PL
dc.references38. Lamichhane, S., Krishna, K. B., & Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere, 148, 336-353. https://doi.org/10.1016/j.chemosphere.2016.01.036pl_PL
dc.references39. Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., & Peng, X. Z. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Science of the Total Environment, 355(1-3), 145-155. https://doi.org/10.1016/j.scitotenv.2005.02.042pl_PL
dc.references40. Li, R., Luo, Y., Zhu, X., Zhang, J., Wang, Z., Yang, W., ... & Li, H. (2024). Anthropogenic impacts on polycyclic aromatic hydrocarbons in surface water: Evidence from the COVID-19 lockdown. Water Research, 262, 122143. https://doi.org/10.1016/j.watres.2024.122143pl_PL
dc.references41. Li, R., Zhang, J., & Krebs, P. (2022). Global trade drives transboundary transfer of the health impacts of polycyclic aromatic hydrocarbon emissions. Communications Earth & Environment, 3(1), 170. https://doi.org/10.1038/s43247-022-00500-ypl_PL
dc.references42. Malakahmad, A., Law, M. X., Ng, K. W., & Abd Manan, T. S. (2016). The fate and toxicity assessment of polycyclic aromatic hydrocarbons (PAHs) in water streams of Malaysia. Procedia Engineering, 148, 806-811. https://doi.org/10.1016/j.proeng.2016.06.572pl_PL
dc.references43. Matuszewska, D., Kiedrzyńska, E., Jóźwik, A., & Kiedrzyński, M. (2025). An analysis of catchment factors associated with heavy metal export into the Baltic Sea and Nature-Based Solutions aimed at its limitation. Journal of Hazardous Materials, 138727. https://doi.org/10.1016/j.jhazmat.2025.138727pl_PL
dc.references44. Mawad, A., Albasri, H., Shalkami, A. G., Alamri, S., & Hashem, M. (2021). Synergistic degradation of phenanthrene by constructed Pseudomonas spp. consortium compared with pure strains. Environmental Technology & Innovation. 24. 101942. https://doi.org/10.1016/j.eti.2021.101942pl_PL
dc.references45. Ministry of Infrastructure. (2021). Regulation of the Minister of Infrastructure of 25 June 2021 on the classification of ecological status, ecological potential and chemical status, the method of classifying the status of surface water bodies, and environmental quality standards for priority substances (Journal of Laws 2021, item 1475).pl_PL
dc.references46. Moeckel, C., Monteith, D. T., Llewellyn, N. R., Henrys, P. A., & Pereira, M. G. (2014). Relationship between the concentrations of dissolved organic matter and polycyclic aromatic hydrocarbons in a typical UK upland stream. Environmental science & technology, 48(1), 130-138. https://doi.org/10.1021/es403707qpl_PL
dc.references47. Moscoso, F., Teijiz, I., Deive, F. J., & Sanromán, M. A. (2012). Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresource technology, 119, 270-276. https://doi.org/10.1016/j.biortech.2012.05.095pl_PL
dc.references48. Murtagh, F., & Legendre, P. (2014). Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion? Journal of Classification, 31, 274–295. https://doi.org/10.1007/s00357-014-9161-zpl_PL
dc.references49. Nas, B., Argun, M. E., Dolu, T., Ateş, H., Yel, E., Koyuncu, S., Dinç , S. & Kara, M. (2020). Occurrence, loadings and removal of EU-priority polycyclic aromatic hydrocarbons (PAHs) in wastewater and sludge by advanced biological treatment, stabilization pond and constructed wetland. Journal of environmental management, 268, 110580. https://doi.org/10.1016/j.jenvman.2020.110580pl_PL
dc.references50. Ofman, P., Skoczko, I., & Włodarczyk-Makuła, M. (2021). Biosorption of LMW PAHs on activated sludge aerobic granules under varying BOD loading rate conditions. Journal of Hazardous Materials, 418, 126332. https://doi.org/10.1016/j.jhazmat.2021.126332pl_PL
dc.references51. Ozaki, N., Takamura, Y., Kojima, K., & Kindaichi, T. (2015). Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system. Water Research, 80, 337-345. https://doi.org/10.1016/j.watres.2015.05.002pl_PL
dc.references52. Paris, A., Ledauphin, J., Poinot, P., & Gaillard, J. L. (2018). Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environmental Pollution, 234, 96-106. https://doi.org/10.1016/j.envpol.2017.11.028pl_PL
dc.references53. Patel, A. B., Singh, S., Patel, A., Jain, K., Amin, S., & Madamwar, D. (2019). Synergistic biodegradation of phenanthrene and fluoranthene by mixed bacterial cultures. Bioresource technology. 284. 115-120. https://doi.org/10.1016/j.biortech.2019.03.097pl_PL
dc.references54. Patrolecco, L., Ademollo, N., Capri, S., Pagnotta, R., & Polesello, S. (2010). Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere, 81(11), 1386-1392. https://doi.org/10.1016/j.chemosphere.2010.09.027pl_PL
dc.references55. Paudel, B., Montagna, P. A., & Adams, L. (2019). The relationship between suspended solids and nutrients with variable hydrologic flow regimes. Regional Studies in Marine Science, 29, 100657. https://doi.org/10.1016/j.rsma.2019.100657pl_PL
dc.references56. Piwowarska, D., & Kiedrzyńska, E. (2022). Xenobiotics as a contemporary threat to surface waters. Ecohydrology & Hydrobiology. 22(2). 337-354. https://doi.org/10.1016/j.ecohyd.2021.09.003pl_PL
dc.references57. Qiao, M., Qi, W., Liu, H., & Qu, J. (2014). Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: Occurrence, possible formation, and source and fate in a water-shortage area. Science of the Total Environment, 481, 178-185. https://doi.org/10.1016/j.scitotenv.2014.02.050pl_PL
dc.references58. R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austriapl_PL
dc.references59. Rizzi, C., Villa, S., Waichman, A. V., de Souza Nunes, G. S., de Oliveira, R., Vighi, M., & Rico, A. (2023). Occurrence, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the Amazon river. Chemosphere, 336, 139285. https://doi.org/10.1016/j.chemosphere.2023.139285pl_PL
dc.references60. Samsøe-Petersen, L., Larsen, E. H., Larsen, P. B., & Bruun, P. (2002). Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environmental science & technology, 36(14), 3057-3063.pl_PL
dc.references61. Sharma, B. M., Melymuk. L., Bharat, G. K., Přibylová, P., Sáňka, O., Klánová, J., & Nizzetto. L. (2018). Spatial gradients of polycyclic aromatic hydrocarbons (PAHs) in air. atmospheric deposition. and surface water of the Ganges River basin. Science of the Total Environment. 627. 1495-1504. https://doi.org/10.1016/j.scitotenv.2018.01.262pl_PL
dc.references62. Sharma, A., Singh, S. B., Sharma, R., Chaudhary, P., Pandey, A. K., Ansari, R., Vasudevan V., Arora A., Singh S., Saha S. & Nain, L. (2016). Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. Journal of Environmental Management, 181, 728-736. https://doi.org/10.1016/j.jenvman.2016.08.024pl_PL
dc.references63. Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., ... & Tao, S. (2013). Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental science & technology, 47(12), 6415-6424. DOI: 10.1021/es400857zpl_PL
dc.references64. Shi, Z., Tao, S., Pan, B., Fan, W., He, X. C., Zuo, Q., Wu S.P., Li B.G., Cao J., Liu W.X., Xu F.L., Wang X.J., Shen W.R. & Wong, P. K. (2005). Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 134(1), 97-111. https://doi.org/10.1016/j.envpol.2004.07.014pl_PL
dc.references65. Shoaei, F., Talebi-Ghane, E., Amirsadeghi, S., & Mehri, F. (2023). The investigation of polycyclic aromatic hydrocarbons (PAHs) in milk and its products: A global systematic review, meta-analysis and health risk assessment. International Dairy Journal, 142, 105645. https://doi.org/10.1016/j.idairyj.2023.105645pl_PL
dc.references66. Slowikowski, K., Schep, A., Hughes, S., Lukauskas, S., Irisson, J.-O., Kamvar, Z. N., … Rojas, E. (2021). ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. R package version 0.9.1.pl_PL
dc.references67. Smol, M., Włodarczyk-Makuła, M., & Skowron-Grabowska, B. (2017). PAHs removal from municipal landfill leachate using an integrated membrane system in aspect of legal regulations. Desalination and Water Treatment, 69, 335-343 https://doi.org/10.5004/dwt.2017.20241pl_PL
dc.references68. Smol, M., & Włodarczyk-Makuła, M. (2017). The effectiveness in the removal of PAHs from aqueous solutions in physical and chemical processes: a review. Polycyclic Aromatic Compounds, 37(4), 292-313. https://doi.org/10.1080/10406638.2015.1105828pl_PL
dc.references69. Sukhdhane, K. S., Pandey, P. K., Ajima, M. N. O., Jayakumar. T., Vennila, A., & Raut, S. M. (2019). Isolation and characterization of phenanthrene-degrading bacteria from PAHs contaminated mangrove sediment of Thane Creek in Mumbai. India. Polycyclic Aromatic Compounds. 39(1). 73-83. https://doi.org/10.1080/10406638.2016.1261911pl_PL
dc.references70. Szklarek S., Kiedrzyńska E., Kiedrzyński M., Mankiewicz-Boczek J., Mitsch W.J. & Zalewski M. (2021). Comparing ecotoxicological and physicochemical indicators of municipal wastewater effluent and river water quality in a Baltic Sea catchment in Poland. Ec. Ind.. 126. 107611. https://doi.org/10.1016/j.ecolind.2021.107611pl_PL
dc.references71. The United Nations Human Settlements Programme (UN-Habitat) and the World Health Organization (WHO), 2024. Progress on the proportion of domestic and industrial wastewater flows safely treated – Mid-term status of SDG Indicator 6.3.1 and acceleration needs, with a special focus on climate change, wastewater reuse and health. United Nations Human Settlements Programme (UN-Habitat) and World Health Organization (WHO), 2024. Licence: CC BY-NC-SA 3.0 IGO.pl_PL
dc.references72. Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental pollution, 162, 110-119. https://doi.org/10.1016/j.envpol.2011.10.025pl_PL
dc.references73. Tongo, I., Ezemonye, L., & Akpeh, K. (2017). Levels, distribution and characterization of polycyclic aromatic hydrocarbons (PAHs) in Ovia river, Southern Nigeria. Journal of Environmental Chemical Engineering, 5(1), 504-512. https://doi.org/10.1016/j.jece.2016.12.035pl_PL
dc.references74. Torretta, V. (2012). PAHs in wastewater: Removal efficiency in a conventional wastewater treatment plant and comparison with model predictions. Environmental technology, 33(8), 851-855. https://doi.org/10.1080/09593330.2011.599430pl_PL
dc.references75. Tremblay, L., Kohl, S. D., Rice, J. A., & Gagné, J. P. (2005). Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles. Marine Chemistry, 96(1-2), 21-34. https://doi.org/10.1016/j.marchem.2004.10.004pl_PL
dc.references76. United Nations Environment Programme (2023). Wastewater – Turning Problem to Solution. A UNEP Rapid Response Assessment. Nairobi. DOI: https://doi.org/10.59117/20.500.11822/43142pl_PL
dc.references77. United States Congress. (1972). Federal Water Pollution Control Act Amendments of 1972, Pub. L. No. 92–500, 86 Stat. 816 (commonly known as the Clean Water Act).pl_PL
dc.references78. United States EPA. Drinking Water Criteria Document for Polycyclic Aromatic Hydrocarbons (PAH) (1991). U.S. Environmental Protection Agency, Washington, D.C., ECAO-CIN-D010 (NTIS PB86117801), 1991.pl_PL
dc.references79. Urbaniak, M., Kiedrzynska, E., Kiedrzyński, M., Mendra, M., Grochowalski A. (2014). The impact of point sources of pollution on the transport of micropollutants along the river continuum. Hydr. Res.. 45(3). 391-410. https://doi.org/10.2166/nh.2013.242pl_PL
dc.references80. Verâne, J., Dos Santos, N. C., da Silva, V. L., de Almeida, M., de Oliveira, O. M., & Moreira, Í. T. (2020). Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Marine Pollution Bulletin, 160, 111687. https://doi.org/10.1016/j.marpolbul.2020.111687pl_PL
dc.references81. Wei, T., & Simko, V. (2021). corrplot: Visualization of a Correlation Matrix. R package version 0.92.pl_PL
dc.references82. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.pl_PL
dc.references83. Wickham, H., Hester, J., & Bryan, J. (2023). readr: Read Rectangular Text Data. R package version 2.1.4.pl_PL
dc.references84. Włodarczyk-Makuła, M. (2005). The loads of PAHs in wastewater and sewage sludge of municipal treatment plant. Polycyclic Aromatic Compounds, 25(2), 183-194 https://doi.org/10.1080/10406630590930743pl_PL
dc.references85. Xia, X. H., Yu, H., Yang, Z. F., & Huang, G. H. (2006). Biodegradation of polycyclic aromatic hydrocarbons in the natural waters of the Yellow River: Effects of high sediment content on biodegradation. Chemosphere, 65(3), 457-466. https://doi.org/10.1016/j.chemosphere.2006.01.075pl_PL
dc.references86. Xu, M., Wu, M., Zhang, Y., Zhang, H., Liu, W., Chen, G., Xiong G., & Guo, L. (2022). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial mixture. International Journal of Environmental Science and Technology, 1-12. https://doi.org/10.1007/s13762-021-03284-4pl_PL
dc.references87. Zhang, X., Yu, T., Li, X., Yao, J., Liu, W., Chang, S., & Chen, Y. (2019). The fate and enhanced removal of polycyclic aromatic hydrocarbons in wastewater and sludge treatment system: A review. Critical Reviews in Environmental Science and Technology, 49(16), 1425-1475. https://doi.org/10.1080/10643389.2019.1579619pl_PL
dc.references88. Zhang, L., Qiu, X., Huang, L., Xu, J., Wang, W., Li, Z., Xu P., & Tang, H. (2021). Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater. Journal of Hazardous Materials, 419, 126524. https://doi.org/10.1016/j.jhazmat.2021.126524pl_PL
dc.references89. Zhang, L., Yang, B., Qu, C., Chen, G., Qi, F., Yu, T., & Mustapha, A. (2022). Construction and degradation performance study of polycyclic aromatic hydrocarbons (PAHs) degrading bacterium consortium. Applied Sciences, 12(5), 2354. https://doi.org/10.3390/app12052354pl_PL
dc.contributor.authorEmail* d.matuszewska@erce.unesco.lodz.pl **e.kiedrzynska@erce.unesco.lodz.plpl_PL
dc.identifier.doi10.1016/j.jconhyd.2025.104781
dc.relation.volume276pl_PL
dc.disciplinenauki biologicznepl_PL
dc.disciplinenauki o Ziemi i środowiskupl_PL


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe