Pokaż uproszczony rekord

dc.contributor.authorGrebowski, Jacek
dc.contributor.authorKrokosz, Anita
dc.date.accessioned2015-04-02T10:53:55Z
dc.date.available2015-04-02T10:53:55Z
dc.date.issued2015
dc.identifier.citationJacek Grebowski and Anita Krokosz, “The Effect of Highly Hydroxylated Fullerenol C60(OH)36 on Human Erythrocyte Membrane Organization,” Journal of Spectroscopy, vol. 2015, Article ID 825914, 6 pages, 2015. doi:10.1155/2015/825914pl_PL
dc.identifier.issn2314-4939
dc.identifier.urihttp://hdl.handle.net/11089/7666
dc.description.abstractThe mechanism of the interaction of highly hydroxylated fullerenol C60(OH)36 with erythrocyte membranes was studied by electron spin resonance spectroscopy (ESR) of stearic acid derivatives labeled with a nitroxyl radical at C-12 or C-16 and with a nitroxyl derivative of maleimide covalently attached to sulfhydryl groups of membrane proteins. A significant increase in membrane fluidity in the hydrophobic region of the lipid bilayer was observed for 12-doxylstearic acid at fullerenol concentrations of 100 mg/L or 150 mg/L, while for 16-doxylstearic acid significant increase in fluidity was only observed at 150 mg/L. Fullerenol at 100 mg/L or 150 mg/L caused conformational changes in membrane proteins, expressed as an increase in the hw/hs parameter, when fullerenol was added before the maleimide spin label (MSL) to the membrane suspension. The increase of the hw/hs parameter may be caused by changes in lipid-protein or protein-protein interactions which increase the mobility of the MSL label and as a result increase the membrane fluidity. Incubation of the membranes with the MSL before the addition of fullerenol blocked the available membrane protein –SH groups and minimized the interaction of fullerenol with them. This confirms that fullerenol interacts with erythrocyte membrane proteins via available protein –SH groups.pl_PL
dc.language.isoenpl_PL
dc.publisherHindawipl_PL
dc.relation.ispartofseriesJournal of Spectroscopy;Volume 2015
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleThe Effect of Highly Hydroxylated Fullerenol C60(OH)36 on Human Erythrocyte Membrane Organizationpl_PL
dc.typeArticlepl_PL
dc.page.number1-6pl_PL
dc.contributor.authorAffiliationFaculty of Biology and Environmental Protection, University of Lodzpl_PL
dc.referencesL.Monticelli, E. Salonen, P. C. Ke, and I. Vattulainen, “Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective,” Soft Matter, vol. 5, no. 22, pp. 4433–4445, 2009pl_PL
dc.referencesS. Foley, C. Crowley,M. Smaihi et al., “Cellular localisation of a water-soluble fullerene derivative,” Biochemical and Biophysical Research Communications, vol. 294, no. 1, pp. 116–119, 2002.pl_PL
dc.referencesB. Srdjenovic, V.Milic-Torres, N. Grujic, K. Stankov, A. Djordjevic, and V. Vasovic, “Antioxidant properties of fullerenol C60(OH)24 in rat kidneys, testes, and lungs treated with doxorubicin,” Toxicology Mechanisms and Methods, vol. 20, no. 6, pp. 298–305, 2010.pl_PL
dc.referencesP. P. Brisebois, A. A. Arnold, Y. M. Chabre, R. Roy, and I. Marcotte, “Comparative study of the interaction of fullerenol nanoparticles with eukaryotic and bacterial model membranes using solid-state NMR and FTIR spectroscopy,” European Biophysics Journal, vol. 41, no. 6, pp. 535–544, 2012.pl_PL
dc.referencesJ. Grebowski, A. Krokosz, and M. Puchala, “Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene,” Biochimica et Biophysica Acta: Biomembranes, vol. 1828, no. 2, pp. 241–248, 2013.pl_PL
dc.referencesJ. Grebowski, A. Krokosz, and M. Puchala, “Fullerenol C60(OH)36 could associate to band 3 protein of human erythrocyte membranes,” Biochimica et Biophysica Acta—Biomembranes, vol. 1828, no. 9, pp. 2007–2014, 2013.pl_PL
dc.referencesR. Qiao, A. P. Roberts, A. S. Mount, S. J. Klaine, and P. C. Ke, “Translocation of C60 and its derivatives across a lipid bilayer,” Nano Letters, vol. 7, no. 3, pp. 614–619, 2007. [8] K. Shimizu, R. Kubota, N. Kobayashi et al., “Cytotoxic effects of hydroxylated fullerenes in three types of liver cells,” Materials, vol. 6, no. 7, pp. 2713–2722, 2013.pl_PL
dc.referencesK. Shimizu, R. Kubota, N. Kobayashi et al., “Cytotoxic effects of hydroxylated fullerenes in three types of liver cells,” Materials, vol. 6, no. 7, pp. 2713–2722, 2013.pl_PL
dc.referencesJ. T. Dodge, C. Mitchell, and D. J. Hanahan, “The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes,” Archives of Biochemistry and Biophysics, vol. 100, no. 1, pp. 119–130, 1963.pl_PL
dc.referencesO. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.pl_PL
dc.referencesL. M. Gordon, F. D. Looney, and C. C. Curtain, “Fatty-acid spin probe interactions with erythrocyte ghosts and liposomes prepared from erythrocyte ghosts,” The Journal of Membrane Biology, vol. 111, no. 2, pp. 155–168, 1989.pl_PL
dc.referencesM. Arabski, K. Gwo´zdzinski, B. Sudak, and W. Kaca, “Effects of Proteus mirabilis lipopolysaccharides with different Opolysaccharide structures on the plasma membrane of human erythrocytes,” Zeitschrift fur Naturforschung C, Journal of Biosciences, vol. 63, no. 5-6, pp. 460–468, 2008.pl_PL
dc.referencesK. Gwo´zdzi´nski, A. Pienia¸zek, and W. Kaca, “Lipopolysaccharide from Proteus mirabilis O29 induces changes in red blood cell membrane lipids and proteins,”The International Journal of Biochemistry & Cell Biology, vol. 35, no. 3, pp. 333–338, 2003.pl_PL
dc.referencesL. J. Berliner and J. Reuben, Spin Labeling, Theory and Applications, vol. 8 of Biological Magnetic Resonance, edited by L. J. Berliner and J. Reuben, PlenumPress, NewYork, NY,USA, 1989.pl_PL
dc.referencesA. Czogalla, A. Pieciul, A. Jezierski, and A. F. Sikorski, “Attaching a spin to a protein—site-directed spin labeling in structural biology,” Acta Biochimica Polonica, vol. 54, no. 2, pp. 235–244, 2007.pl_PL
dc.referencesT. P´ali, D. Bashtovyy, and D. Marsh, “Stoichiometry of lipid interactions with transmembrane proteins-Deduced from the 3D structures,” Protein Science, vol. 15, no. 5, pp. 1153–1161, 2006.pl_PL
dc.referencesS. A. S´anchez, M. A. Tricerri, G. Ossato, and E. Gratton, “Lipid packing determines protein-membrane interactions: challenges for apolipoprotein A-I and high density lipoproteins,” Biochimica et Biophysica Acta, vol. 1798, no. 7, pp. 1399–1408, 2010.pl_PL
dc.referencesM. Babavali,M. Esmann, N. U. Fedosova, and D.Marsh, “Ureainduced unfolding of Na,K-ATPase as evaluated by electron paramagnetic resonance spectroscopy,” Biochemistry, vol. 48, no. 38, pp. 9022–9030, 2009.pl_PL
dc.referencesK.Gwozdzinski, A. Pieniazek, J. Brzeszczynska, S. Tabaczar, and A. Jegier, “Alterations in red blood cells and plasma properties after acute single bout of exercise,” The ScientificWorld Journal, vol. 2013, Article ID168376, 10 pages, 2013.pl_PL
dc.referencesM. Sztiller, M. Puchala, A. Kowalczyk, and G. Bartosz, “The influence of ferrylhemoglobin and methemoglobin on the human erythrocyte membrane,” Redox Report, vol. 11, no. 6, pp. 263–271, 2006.pl_PL
dc.referencesS. A.Mendanha, J. L. V. Anjos, A. H. M. Silva, and A. Alonso, “Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide,” Brazilian Journal of Medical and Biological Research, vol. 45, no. 6, pp. 473–481, 2012.pl_PL
dc.referencesM. Soszy´nski andG. Bartosz, “Decrease in accessible thiols as an index of oxidative damage to membrane proteins,” Free Radical Biology & Medicine, vol. 23, no. 3, pp. 463–469, 1997.pl_PL
dc.referencesR. Koziczak, M. Gonciarz, A. Krokosz, and Z. Szweda- Lewandowska, “The influence of split doses of 𝛾���-radiation on human erythrocytes,”The Journal of Radiation Research, vol. 44, no. 3, pp. 217–222, 2003.pl_PL
dc.referencesA. Krokosz and Z. Szweda-Lewandowska, “Induction of transient radioresistance in human erythrocytes,” Radiation Physics and Chemistry, vol. 75, no. 9, pp. 967–976, 2006.pl_PL
dc.referencesP. Stepien, A. Polit, and A. Wisniewska-Becker, “Comparative EPR studies on lipid bilayer properties in nanodiscs and liposomes,” Biochimica et Biophysica Acta—Biomembranes, vol. 1848, no. 1, pp. 60–66, 2015.pl_PL
dc.identifier.doi10.1155/2015/825914


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska