Pokaż uproszczony rekord

dc.contributor.authorKlim, Dorota
dc.contributor.authorWardowski, Dariusz
dc.date.accessioned2015-04-07T08:33:00Z
dc.date.available2015-04-07T08:33:00Z
dc.date.issued2015-02-11
dc.identifier.issn1687-1812
dc.identifier.urihttp://hdl.handle.net/11089/7734
dc.description.abstractThe article is a continuation of the investigations concerning F-contractions which have been recently introduced in [Wardowski in Fixed Point Theory Appl. 2012:94,2012]. The authors extend the concept of F-contractive mappings to the case of nonlinear F-contractions and prove a fixed point theorem via the dynamic processes. The paper includes a non-trivial example which shows the motivation for such investigations. The work is summarized by the application of the introduced nonlinear F-contractions to functional equations.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer International Publishingpl_PL
dc.relation.ispartofseriesFixed Point Theory and Applications;22
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleFixed points of dynamic processes of set-valued F-contractions and application to functional equationspl_PL
dc.typeArticlepl_PL
dc.page.number1-9pl_PL
dc.contributor.authorAffiliationDepartment of Nonlinear Analysis, Faculty of Mathematics and Computer Science,pl_PL
dc.referencesWardowski, D: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)pl_PL
dc.referencesCosentino, M, Vetro, P: Fixed point results for F-contractive mappings of Hardy-Rogers-type. Filomat 28(4), 715-722 (2014)pl_PL
dc.referencesSgroi, M, Vetro, C: Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat 27(7), 1259-1268 (2013)pl_PL
dc.referencesSecelean, NA: Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013, 277 (2013)pl_PL
dc.referencesPaesano, D, Vetro, C: Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 108, 1005-1020 (2014)pl_PL
dc.referencesHussain, N, Salimi, P: Suzuki-Wardowski type fixed point theorems for α-GF-contractions. Taiwan. J. Math. 18, 6 (2014)pl_PL
dc.referencesAubin, JP, Ekeland, I: Applied Nonlinear Analysis. Wiley, New York (1984)pl_PL
dc.referencesAubin, JP, Siegel, J: Fixed points and stationary points of dissipative multivalued maps. Proc. Am. Math. Soc. 78, 391-398 (1980)pl_PL
dc.referencesBellman, R, Lee, ES: Functional equations in dynamic programming. Aequ. Math. 17, 1-18 (1978)pl_PL
dc.contributor.authorEmailwardd@math.uni.lodz.plpl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska