On best proximity points for set-valued contractions of Nadler type with respect to b-generalized pseudodistances in b-metric spaces
Abstract
In this paper, in b-metric space, we introduce the concept of b-generalized
pseudodistance which is an extension of the b-metric. Next, inspired by the ideas of
Nadler (Pac. J. Math. 30:475-488, 1969) and Abkar and Gabeleh (Rev. R. Acad. Cienc.
Exactas Fís. Nat., Ser. A Mat. 107(2):319-325, 2013), we define a new set-valued
non-self-mapping contraction of Nadler type with respect to this b-generalized
pseudodistance, which is a generalization of Nadler’s contraction. Moreover, we
provide the condition guaranteeing the existence of best proximity points for
T : A → 2B. A best proximity point theorem furnishes sufficient conditions that
ascertain the existence of an optimal solution to the problem of globally minimizing
the error inf{d(x, y) : y ∈ T(x)}, and hence the existence of a consummate approximate
solution to the equation T(x) = x. In other words, the best proximity points theorem
achieves a global optimal minimum of the map x → inf{d(x; y) : y ∈ T(x)} by
stipulating an approximate solution x of the point equation T(x) = x to satisfy the
condition that inf{d(x; y) : y ∈ T(x)} = dist(A; B). The examples which illustrate the main
result given. The paper includes also the comparison of our results with those existing
in the literature.
Collections
The following license files are associated with this item: