Pokaż uproszczony rekord

dc.contributor.authorFortuniak, Krzysztof
dc.contributor.authorPawlak, Włodzimierz
dc.date.accessioned2015-06-18T08:04:37Z
dc.date.available2015-06-18T08:04:37Z
dc.date.issued2014-08-29
dc.identifier.issn1573-1472
dc.identifier.urihttp://hdl.handle.net/11089/9947
dc.description.abstractWe present the turbulence spectra and cospectra derived frommore than five years of eddy-covariance measurements at two urban sites inŁód´z, central Poland. The fast response wind velocity components were obtained using sonic anemometers placed on narrow masts at 37 and 42 m above ground level. The analysis follows Kaimal et al. (Q J R Meteorol Soc 98:563–589, 1972) who established the spectral and cospectral properties of turbulent flow in atmospheric surface layer on the basis of the Kansas experiment. Our results illustrate many features similar to those of Kaimal et al., but some differences are also observed. The velocity (co)spectra from Łód´z show a clear inertial subrange with −2/3 slope for spectra and −4/3 slope for cospectra. We found that an appropriate stability function for the non-dimensional dissipation of turbulent kinetic energy calculated from spectra in the inertial subrange differs from that of Kaimal et al., and it can be satisfactorily estimated with the assumption of local equilibrium using standard functions for the non-dimensional shear production. A similar function for the cospectrum corresponds well to Kaimal et al. for unstable and weakly stable conditions. The (co)spectra normalized by their spectral values in the inertial subrange are in general similar to those of Kaimal et al., but they peak at lower frequencies in strongly stable conditions. Moreover, our results do not confirm the existence of a clear “excluded region” at low frequencies for the transition from stable to unstable conditions, for longitudinal and lateral wind components. The empirical models of Kaimal et al. with adjusted parameters fit well to the vertical velocity spectrum and the vertical momentum flux cospectrum. The same type of function should be used for longitudinal and lateral wind spectra because of their sharper peak than occurs for the Kansas data. Finally, it should be stressed that the above relationships are well-defined for averaged values. The results for individual 1-h periods are very scattered and can be significantly different from the generalized functions.pl_PL
dc.description.sponsorshipFunding for this research was provided by the Polish Ministry of Science and Higher Education (State Committee for Scientific Research) under grant no. N306 276935 for the years 2008–2012 and grant no. N306 519638 for the years 2010–2013.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Science+Business Mediapl_PL
dc.relation.ispartofseriesBoundary-Layer Meteorology;(2015) 154
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectDissipation of turbulent kinetic energypl_PL
dc.subjectEddy-covariance methodpl_PL
dc.subjectTurbulence spectrapl_PL
dc.subjectUniversal functionspl_PL
dc.subjectUrban climatepl_PL
dc.titleSelected Spectral Characteristics of Turbulence over an Urbanized Area in the Centre of Łódź, Polandpl_PL
dc.typeArticlepl_PL
dc.page.number137–156pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Department of Meteorology and Climatology, Faculty of Geographical Sciencespl_PL
dc.referencesAlbertson JD, Parlange MB, Kiely G, Eichinger WE (1997) The average dissipation rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer. J Geophys Res 102:13423–13432pl_PL
dc.referencesAmiroBD(1990) Drag coefficients and turbulence spectrawithin three boreal forest canopies.Boundary-Layer Meteorol 52:227–246pl_PL
dc.referencesAnderson DE,Verma SB,ClementRJ (1986) Turbulent spectra ofCO2,water vapour, temperature and velocity over a deciduous forest. Agric For Meteorol 38:81–99pl_PL
dc.referencesAndreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS, Persson CW, Grachev AA (2006) Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech 559:117–149pl_PL
dc.referencesBaas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux-gradient relationships for stably stratified conditions. J Atmos Sci 63:3045–3054pl_PL
dc.referencesCaughey SJ,Wyngaard JC (1979) The turbulent kinetic energy budget in convective conditions.QJ R Meteorol Soc 105:231–239pl_PL
dc.referencesChampagne FH, Friehe CA, LaRue JC,Wyngaard JC (1977) Flux measurements, flux estimation techniques, and fine-scale measurements in the unstable surface layer over land. J Atmos Sci 34:515–530pl_PL
dc.referencesCharuchittipan D,Wilson JD (2009) Turbulent kinetic energy dissipation in the surface layer. Boundary-Layer Meteorol 132:193–204pl_PL
dc.referencesChoi W, Faloona IC, McKay M, Goldstein AH, Baker B (2011) Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX. Atmos Chem Phys 11:6837–6853pl_PL
dc.referencesChristen A, RotachMW,Vogt R (2009) The budget of turbulent kinetic energy in the urban roughness sublayer. Boundary-Layer Meteorol 131:193–222pl_PL
dc.referencesDe Bruin HAR, Kohsiek W, Van den Hurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63:231–257pl_PL
dc.referencesDyer A, Bradley E (1982) An alternative analysis of flux-gradient relationships at the 1976 ITCE. Boundary- Layer Meteorol 22:3–19pl_PL
dc.referencesFeigenwinter C, Vogt R, Parlow E (1999) Vertical structure of selected turbulence characteristics above an urban canopy. Theor Appl Climatol 62:51–63pl_PL
dc.referencesFortuniak K, Kłysik K, Wibig J (2006) Urban-rural contrasts of meteorological parameters in Łód´z. Theor Appl Climatol 84:91–101pl_PL
dc.referencesFortuniak K, Pawlak W, Siedlecki M (2013) Integral turbulence statistics over a central European city centre. Boundary-Layer Meteorol 146:257–276pl_PL
dc.referencesFrenzen P, Vogel CA (1992) The turbulent kinetic energy budget in the atmospheric surface layer: a review and an experimental reexamination in the field. Boundary-Layer Meteorol 60:49–76pl_PL
dc.referencesFrenzen P, Vogel CA (2001) Further studies of atmospheric turbulence in layers near the surface: scaling the TKE budget above the roughness sublayer. Boundary-Layer Meteorol 99:173–206pl_PL
dc.referencesGarratt JR (1972) Studies of turbulence in the surface layer over water. Q J R Meteorol Soc 98:642–657pl_PL
dc.referencesHartogensis OK, De Bruin HAR (2005) Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116:253–276pl_PL
dc.referencesHicksBB(1978) Some limitations of dimensional analysis and power laws. Boundary-Layer Meteorol 14:567– 569pl_PL
dc.referencesHögströmU(1990) Analysis of turbulence structures in the surface layer with amodified similarity formulation for near neutral conditions. J Atmos Sci 47:1949–1972pl_PL
dc.referencesHögström U, Bergström H, Alexandersson H (1982) Turbulence characteristics in a near neutrally stratified urban atmosphere. Boundary-Layer Meteorol 23:449–472pl_PL
dc.referencesHøjstrup J (1981) A simple model for the adjustment of velocity spectra in unstable conditions downstream of an abrupt change in roughness and heat flux. Boundary-Layer Meteorol 21:341–356pl_PL
dc.referencesKaimal JC (1978) Horizontal velocity spectra in an unstable surface-layer. J Atmos Sci 35:18–24pl_PL
dc.referencesKaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York 289 pppl_PL
dc.referencesKaimal JC,Wyngaard JC, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J RMeteorol Soc 98:563–589pl_PL
dc.referencesKanda M, Moriwaki R, Roth M, Oke TR (2002) Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometery. Boundary-Layer Meteorol 105:177–193pl_PL
dc.referencesKanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Meteorol 143:357–377pl_PL
dc.referencesKlipp CL, Mahrt L (2004) Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 130:2087–2103pl_PL
dc.referencesKłysik K (1996) Spatial and seasonal distribution of anthropogenic heat emissions in Lodz, Poland. Atmos Environ 30:3397–3404pl_PL
dc.referencesKłysik K, Fortuniak K (1999) Temporal and spatial characteristics of the urban heat island of Łód´z, Poland. Atmos Environ 33:3885–3895pl_PL
dc.referencesLeonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech 651:519–539pl_PL
dc.referencesLi X, Zimmerman N, Princevac M (2008) Local imbalance of turbulent kinetic energy in the surface layer. Boundary-Layer Meteorol 129:115–136pl_PL
dc.referencesMcBean GA, Elliot JA (1975) Vertical transports of kinetic energy by turbulence and pressure in the boundary layer. J Atmos Sci 32:753–766pl_PL
dc.referencesMcNaughton KG (2006) On the kinetic energy budget of the unstable atmospheric surface layer. Boundary- Layer Meteorol 118:83–107pl_PL
dc.referencesMcNaughton KG, Clement RJ, Moncrieff JB (2007) Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer. Nonlinear Process Geophys 14:257–271pl_PL
dc.referencesMoreas OLL (2000) Turbulence characteristics in the surface boundary layer over the South American Pampa. Boundary-Layer Meteorol 96:317–335pl_PL
dc.referencesOfferle B, Grimmond CSB, Fortuniak K (2005) Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. Int J Climatol 25:1405–1419pl_PL
dc.referencesOfferle B, Grimmond CSB, Fortuniak K, Kłysik K, Oke TR (2006a) Temporal variations in heat fluxes over a central European city centre. Theor Appl Climatol 84:103–115pl_PL
dc.referencesOfferle B, Grimmond CSB, Fortuniak K, Pawlak W (2006b) Intra-urban differences of surface energy fluxes in a central European city. J Appl Meteorol Climatol 45:125–136pl_PL
dc.referencesOncley SP, Friehe CA, Larue JC, Businger JA, Itsweire EC, Chang SS (1996) Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J Atmos Sci 53:1029–1044pl_PL
dc.referencesPahlowM, Parlange M, Porté-Agel F (2001) On Monin–Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol 99:225–248pl_PL
dc.referencesPawlak W, Fortuniak K, Siedlecki M (2011) Carbon dioxide flux in the centre of Łód´z, Poland–analysis of a 2-year eddy covariance measurement data set. Int J Climatol 31:232–243pl_PL
dc.referencesRoth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:941–990pl_PL
dc.referencesRoth M, Oke TR (1993) Turbulent transfer relationships over an urban surface. I: spectral characteristics. Q J R Meteorol Soc 119:1071–1104pl_PL
dc.referencesRoth M, Salmond JA, Satyanarayana ANV (2006) Methodological considerations regarding the measurement of turbulent fluxes in the urban roughness sublayer: the role of scintillometry. Boundary-Layer Meteorol 121:351–375pl_PL
dc.referencesSorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice Hall, Englewood Cliffs, NJ 317 pppl_PL
dc.referencesSu HB, Schmid HP, Grimmond CSB, Vogel CS, Oliphant AJ (2004) Spectral characteristics and correction of long-term eddy-covariance measurements over two mixed hardwood forests in non-flat terrain. Boundary- Layer Meteorol 110:213–253pl_PL
dc.referencesThiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorol 58:367–389pl_PL
dc.referencesVesala T, Järvi L, Launiainen S, Sogachev A, RannikÜ,Mammarella I, Siivola E,Keronen P, Rinne J, Riikonen A, Nikinmaa E (2008) Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 60:188–199pl_PL
dc.referencesWebb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapor transfer. Q J R Meteorol Soc 106:85–100pl_PL
dc.referencesWyngaard JC (1975) Modeling the planetary boundary—extension to the stable case. Boundary-Layer Meteorol 9:441–460pl_PL
dc.referencesWyngaard JC, Coté OR (1972) Cospectral similarity in the atmospheric surface layer. Q J R Meteorol Soc 98:590–603pl_PL
dc.referencesWyngaard JC, Coté OR, Izumi Y (1971) Local free convection, similarity, and the budgets of shear stress and heat flux. J Atmos Sci 28:1171–1182pl_PL
dc.referencesZhang H-S, Park S-U (1999) Dissipation rates of turbulent kinetic energy and temperature and humidity variances over different surfaces. Atmos Res 50:37–51pl_PL
dc.referencesZieliński M, Fortuniak K, PawlakW, SiedleckiM(2013) Turbulent sensible heat flux in Łód´z, Central Poland, obtained from scintillometer and eddy covariance measurements. Meteorol Z 22:603–613pl_PL
dc.contributor.authorEmailkfortun@uni.lodz.plpl_PL
dc.date.defence2014-08-29


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska