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ON AN ESTIMATE 
OF SOME FUNCTIONAL, IN THE CLASS 

OF ODD BOUNDED UNIVALENT FUNCTIONS

Let us denote by S(M), M > 1, the family of functions of the form

univalent and holomorphic in the disc E ■ {z: |z| < 1} and satis
fying in it the condition | F(z) | < M, M > 1. Denote by S^2  ̂ (VF?) 
the class of odd univalent functions of the form

F(z) * z + A^z2 + .. • »

satisfying in E the condition |H(z)| < /S ', M > 1.
Of course, for each function J e  S(M), the function H(z)

- / F(z2) belongs to S^2  ̂ (/if), and vice versa.versa.
In the paper, it is proved that the following theorem takes place.
THEOREM. If H is any function of the class S ^  (/ID, then the 

following estimates

(1 - i)2 + [(1 - ¿>(1 - ¿)]2

when 1 < M £ 6,
|c3|2 + |c5l 2 <•

[(v + l)e ° - i]2 + j[(3v2 + 2v. + l)e o M 4 o o
-2 Mo

when M > 6

hold, where Vq e (0, log M) is the root of the equation

2[(v + l)e" V - + [(3 V - l)e"V - J]



• [(3^ + 2v + l)e'2v - £(v + l)e'V + -~ + 1) - 0.
M M2

For each M > 1, there exist functions of the class (S~ff) for
which the equality sign in the above estimate takes place.

1. Let us denote by S the family of functions of the form
F(z) = z + A.z2 + A,z3 + ... + A_zn + ..., ¿ i  n

univalent and holomorphic in the disc E = { z :  )z| < 1 }.
Let 2 ̂ stand 

in E the expansion

(2 )Let S stand for the class of odd univalent functions having

(1) H(z) = z + C3z3 + C5z5 + ... + C2n+1z2n+1 + ...
/ o )It is known that H e s' if and only if there exists a function 

F e S such that
(2) H(z) = /f ( z2'), z e E.

Let S(M), M > 1, be a subclass of S of functions satisfying 
in the disc E the condition |F(z)| < M. Denote by S^'t/M1) the 
class of univalent functions of form (1 ), bounded by Æ ,  that is,
IH(z)I < Æ ,  z e E. Of course, for any function F e S(M), the 
function H defined by relationship (2) belongs to the class 

1 2)S' '(Æ), and vice versa.
Making use of this relationship, we get

(3) C3 = 2k2' C5 = 2(A3 ” 4A2* '
From the well-known estimate of the modulus of the coefficient 

A2 in the class S(M) ([3]) one knows that

(4) |C31 S 1 - i, M > 1,

with the eguality in (4) holding only for the Pick function w = 
= P(z, M), P(0, M) = 0, given by the eguation

(5)  v = ---------5--- z 6 E, I e I = 1.
(M + ewp (1 + ez)

2One also knows the estimate of the functional | A3 - aA2 1, for 
any real a, in the class S(M) ( [lj, [1]); in the case a = j, the• 
maximum of this functional is not attained for the Pick function.



The aim of our paper is to determine the maximum of the func
tional
(6 ) 7(H) = | C3 | 2 + | C5 |2

in the classes S^*(v/m') for M > 1 .
(2 )In the full class S' , functional (6 ) was estimated by M. S. 

R o b e r t s o n  [4] .
In paper [5] we obtained a partial result, namely, an estimate 

of the maximum of the functional 7(H) in the classes S ^ i / M 1) for 
M 2 3. The method applied there brought about difficulties in the 
investigation of this functional for the remaining M, that is. 
M e  (1, 3).

In the present paper we obtain a final result, i.e. an esti
mate of functional (6 ) from above for all M > 1; of course, for 
M 2 3, the result is the same as that in [5].

In the proof, use is made again of some general lemmas proved 
in [1], special corollaries following from them and the properties 
of the functional considered itself. The basic modification of the 
procedure from [5], arisen, among other things, after many dis
cussions with Z. J. J a k u b o w s k i ,  consists mainly in a 
skilful use of the above-mentioned lemmas and other estimates of 
some well-known functionals. On account of the method applied, 
our reasoning is carried out for all M > 1; therefore, unfortu
nately, it turns out to be indispensable to repeat some fragments 
of paper [5].

2. Note that (3) and the properties of the classes S(M) 
imply that the determination of the maximum of functional (6 ) is 
equivalent to the determination of the maximum of the functional

(7) G(F) = A2|2 + [Re |(A3 - \h\)]2, F e S(M), M > 1.

Evidently, for the purpose, it is sufficient to determine the 
upper bound of the functional G(F) in the subclass S*(M) of S(M) 
of functions of the form (cf. [2])

F(z) = lim etf(z, t), m = log M, 
t-<m

where f (z, t) is a holomorphic function of the variable z in the 
disc E, |f(z, t) | < 1 for ze E, f (0, t) = 0 and f ̂ (0, t) > 0, 
and f(z, t) is, for 0 £ t 2 m, a solution of the Lowner equation



If - f 1 + kf
3t 1 - kf'

satisfying the initial condition f(z, 0) = z. The function k = 
= k(t), |k(t)| = 1 , is any function continuous in the interval 
<0 , m> except a finite number of points of discontinuity of the 
first kind.

Since the coefficients A2 and of functions of the class 
S*(M) are expressed by the formulae ([2], [1]):

m -tA2 = -2 / e  k( t )di, 
o
ni « « rn a

A3 = -2/e" k ( t )dx + 4( _Te-Tk(i)dT), m = log M,
0 o

therefore it follows from (7) that we ought to determine the maxi
mum of the expression

m  - t 2 m  -T 2(8 ) G(F) = (Se cos© (t)di) + (/e Tsin 0(T)dtr
o o

1 ^  T  0  ^  T 0+ ¿{3(ye'Tcos e(T)dt)z - 3 (J~e~ sin 0 ( T ) d t r  
o o

- 4 /e ' 2x cos2 0(T)dT + 1 - e~ 2 m }2 
o

where 6 (x) = arg k(x), 6 (x) e <0 , 2v>, over all possible func
tions k(t) satisfying the assumptions of the Lowner theorem.

In the further part of the paper, we shall make use of the 
lemmas from [1], mentioned of in the introduction.

LEMMA A. If: 1° X is any real function of a real variable t, 
defined and continuous in the interval <0 , m> except a finite 
number of points of discontinuity of the first kind, 2° |X(t)| S 
S e~T for t e <0, m> and 3°

(A.1 ) jr X2 (t)dx £ me"2m, 
o

then

(A.2) Ijr X(t)dT)2 S m(me"2m - ve‘2v) o
where v, 0 £ v £ m, is the root of the equation



(A.3) S  A2 (i)dT = me"2m - ve'2v. 
o

For each v e <0, m>, there exists a constant function X(t) = c
such that in (A. 2) the equality holds. Then the relation me2 =
= me 2m - ve 2u should take place.

LEMMA B. If a function X satisfies assumptions 1° and 2° 
of Lemma A and the condition

(B.l) S  X2 (t)dx 2 me-2m, 
o

then
m

(B.2) |S X(t)dx| S (v + l)e'v - e~m 
o

where v, 0 £ v £ m, is the root of the equation

(B.3) JT X2 (t)dr = (v + |)e“2v - ~a~2m. 
o

Estimate (B.2) is sharp for every v and the equality sign occurs 
only if X(t ) = ±jt (t ) where

X ( T ) =
e-v for o S t £ v, 

e-1 for v S t S m.

Put A2 = -2(x + iy), that is.

(9)

m m
x = s  X..(T)dT, y = s  X-(T)dx,

o o

Xjix) = e-T cos e(x), X2(t ) = e~T sin 0(t).
From the properties of the function k(t), the definition of 

the function 0(t) and from (9) it follows that the functions 
X ^ t ), X2 (t ) satisfy assumptions l°-2° of Lemma A and, moreover, 
either (A.l) or (B.l).

Let v = v(0) be the root of the equation



(1 1 ) fiA(v) = me'2m - ve-2v' 0 £ v £ v*,

with that v* = m when 0 < m £ j or me"2m - v*e"2v* = 0 when 

m > j, or the root of the equation 

m ,

(12) S  Xf(x)dx = R_(v) o 1 B
where

(13) iJB(v) = (v + ^)e‘2v - |e"2m, 0 £ v £ m.

Evidently, the function ftA(v) satisfies condition (A.l) of
Lemma A, whereas i2g(v) - condition (B.l) of Lemma B.

Analogously, let jj = y(0 ) be the root of the equation 
m ^

(1 0 ') s  X2 (x)di = fiA(u), 0 £ y £ V*,o n

or of the equation
m _

(12 ) S  X2 (x)dx = nB(y), 0 £ p £ m,

where fiA, ftB are defined by the formulae (1 1 ), (13), respectively 
Of course, for all admissible 0(x),

ni « _ in
(14) S  e T sin 0 (x)di = j(l - e“2m) - S  e’2T cos2 0(t)c1t.

° o
Note that if m e (0, m> where in is the root of the equation

(15) | ( 1 - e-2m) = 2me-2m, 

then the equation

(1 1 ') £2a(v) = ¿ ( 1 - e"2m) - me“2m 

possesses exactly one root vA e (0 , v*).
If m e <m, +°°), m is defined by (15), then the equation 

(13') nB(v) = ¿(1 - e"2m) - me"2m 

possesses exactly one root vD e (0 , m).

Examining the functions «A(v), fiB(v), | ( 1 - e_2m) - i2A(v),



•̂(1 - e 2m) - £2b (v ) and making use of (14), we shall obtain the 
relations below:

if 0 < m £ in,
then

" e 2m* " where 0 £ v £ m.

(16) y = ■
v £ y £ v*,

^A1 ^ * 1 " e where 0 £ v £ v^,
0 £ y £ tA ,

1 " e 2m) " nA*v^ where \>A £ v £ v*.

-2m

if m 2 m, then
0 £ y £ m;

(17) y =-

n^ 1 [ | (1 - e-2|!n) - nB(v)] Where 0 £ v £ Cfi,
0 £ y £ v*,

- e 2m> ” where v0 £ v £ m,
vB £ y £ m,

i2B1 t| (1 ' e"2m> “ nA(v)  ̂ where 0 £ v £ v*,
0 * y £ vB,

m, vA, \>B being defined by eguations (15), (11'), (13'), respec
tively.

If we use Lemmas A, B as well as (9), we shall get an esti-
2 1 2mate for x = j(Re A2) . Moreover, taking account of the above 

properties of the functions fiA(y), ^B(y) and eguality (14), we
2 1 9shall also get the respective estimate for y = -̂(Im A2) .

Consequently, if condition (A.l) holds, then, in virtue of 
(A.3), (A.2) and (9), we have

0 £ x£ £ XA(v)
where
(18) xA(v) = m(me 2m - ve"2v).

The function XA(v) is decreasing in the interval <0, v*>, and 
let us recall that v* = m when 0 < m £ j or me~2m - v*e-2v* = 0 
when m > ¿. Besides, 0 £ Xft(v) £ m2e-2m.



If condition (B.l) holds, then, in virtue of (B.3), (B.2) and
(9), we have

0 £ x2 £ X0 (v)
where
(19) XB(v) = [(v + 1)e-v - e-m]2.

The function XB(v) is decreasing in the interval <0, m>. Besides 
m2e-2m £ XB(v) £ (1 - e_m)2.

From (16) or (17), for fixed m and v, we can determine the 
value p corresponding to them; using again Lemma A or Lemma B, 
respectively, we shall obtain - in consequence - that, for fixed 
m and v,

0 £ y2 £ XA(p) or 0 £ y2 £ X^p);

Xft, Xg are defined by formulae (18), (19).
2 1 2The above estimates of the quantities x = ^(Re A2) and 

2 1 2y = j(Im Aj) , being consequences of Lemmas A and B, will be made 
use of in the next section of the paper.

3. The assumptions of Lemmas A and B as well as (9) imply 
that the function A^(x) satisfies either condition (A.l) or (B.l). 
Since Aj^t) = e-T cos 0(t), therefore, using the appropriate 
lemna, we consider some subset of functions 0 (t), thus some sub
set of functions k(x) (0(x) = arg k(T)), and in consequence, 
some subclass of the family S(M).

From (9) it follows that expression (8 ) takes the form

(20) G(F) = x2 + y2 + ^[3x2 - 3y2 - 4 J  e“2x cos2 0(x)dx
o

+ 1 - e"2m]2, m = log N.
From (9) and estimate (4) we have

(2 1 ) x2 + y2 < (1 - e-“ )2, m > 0.
By using Lemma A or Lemna B and taking account of inequality

(21), the problem of determining the maximum of G(F) will be re
duced to the investigation of the maxiaa of some functions of the 
variable v where v is defined by (1 0 ) or (1 2 ).



Denote by G(x2, y2; \>) the right-hand side of (20), i.e.

(20') G(x2, y2; v) = x2 + y2 + j[3x2 - 3y2
m . , ,

- 4 S  * cos 0(T)dt + 1 - e” ] . 
o

Note first that, for a fixed v = v(0), G(x2, y2; v) is a convex
2 2function of the variables x , y and, as such, does not attain 

its maximum inside the set of variability of x2, y2. Taking ac
count of the properties obtained in section 2 as well as (2 1 ), we
shall consider six cases in which we determine all possible va-

2 2lues of x and y for which the function G can attain its maximum.
at. Let 0 < m £ m where m is the root of eguation (15). Con

sider the case when v = v(0 ) is the root of eguation (1 0 ), i.e.
II) n n
S  e T cos 0 (x)dx = fiA(v), whereas y = y(0 ) - the root of equa- 
o

m -  2 t 2tion (10 ), i.e. S  e sin 0 (x)dx = i2,.(y), where ii* is given by o « A
formula (11). Then (16) implies that 0 £ v £ v. and 0 £ y £ v.,A A
where \>A is the root of eguation (11'). From Lemma A we have 

0 £ x2 S XA(v) and 0 S y2 £ XA(y), 

where XA is given by (18). It can be verified that Xft(v) + XA(y >

- (1 - e m )2 when 0 £ v S vA and 0 £ y S \>A. In consequence,
2 2the maximum of G(x , y ; v) can be attained only in the cases 

when:
1° x2 = 0 and y2 = 0 ,
2° x2 = Xft(v) and y2 = 0,

3° x2 = xA(v) and y2 = (1 - e"m )2 - XA(v),

4° x2 = (1 - e“m )2 - XA(y) and y2 = XA(y),

5° x2 = 0 and y2 = XA(y),

with that 0 S v £ vA and 0 £ y £ vA>

fc>. Let, as above, 0 < m £ m. Consider the case when v =
- v(0 ) is the root of equation (1 0 ), whereas y = y(0 ) - the root



of equation (12'). Then it follows from (16) that \>A £ v £ v* and 
0 £ y £ m. From Lemmas A and B we have, respectively,

0 £ x2 £ XA(v) and 0 £ y2 £ X0 (y),

where Xft, Xg are defined by formulae (18), (19). It can be shown
that XA(v) + Xg(y) 2 (1 - e m )2 when \>A £ \> £ v* and 0 £ y £ m.
Consequently, the maximum of G(x2, y2; v) can be attained only if

1° x2 = 0 and y2 = 0 ,
2° x2 = XA(v) and y2 = 0,

3° x2 = XA(v) and y2 = (1 - e'm )2 - XA(v),

4° x2 = (1 - e- m )2 - XB(y) and y2 = Xg(y),
5° x2 = 0 and y2 = X0 (y),
with that v»A £ v £ v* and 0 £ y £ m.

c . Let 0 < m £ m and let v = v (0) be the root of equation
(12), whereas y = y(0) - the root of equation (10'). Then from 
(16) we have 0 £ v £ m and vA £ y £ v*, and from Lemmas B and A 
it follows, respectively, that

0 £ x2 £ XB(v) and 0 £ y2 £ XA(y).

Also in this case, Xg(v) + XA(y)  ̂ (1 - e- m )2 when 0 £ v
A
VA * y £ v*. 2 ?Hence the maximum of G(x , y ; v) can be
only
1°

if:
x2 = 0 and y2 = 0,

2° x2 = Xg 2(v) and y = 0 ,
3° x2 = XB(v) and y2 = (l - e- m )2 - Xg(v),
4° x2 = (1 - e"m )2 - XA(y) and y2 = XA(y),
5° X 2 = 0 and y2 = XA(y),

with that 0 £ v £ m and v, £ y £ v*.

cl. Let m 2 m where m is the root of equation (15). Consider 
now the case when v = v(0 ) is the root of equation (1 0 ), whereas 
y = y(0) - the root of equation (12'). In this case, from (17) we 
have 0 £ v £ v* and 0 £ y £ ig where Vg is the root of equation 
(13'). From Lemmas A and B we have, respectively,



0 £ x2 £ XA(v) and 0 £ y2 £ XB(y).

It can be checked that XA<V> + i l l -  e~m )2 when 0 £ v £ v*
and 0 S p i v  Thus the maximum of G(x2, y2; v) can be attained 
only if:
1° x2 = 0 and y2 = 0 ,
2° x2 = XA(v) and y2 = 0,

3° x2 = XA(v) and y2 = (1 - e"m )2 - XA(v),

4° x2 = (1 - e- m )2 - XB(y) and y2 = Xg(y),

5° x2 = 0 and y2 = XB(y),

with that 0 £ v £ v* and 0 £ y £ v>B.
It can be seen that, in relation to case (b), only the inter

vals of variability of v and y have changed.
&. Let, as before, m 2 m. Consider the case when v = v(0)

is the root of equation (1 2 ), whereas y = y(0 ) - the root of
eguation (10'). Then from (17) we have 0 £ v £ \>B and 0 £ y £ v*, 
and Lemmas B and A imply that

0 £ x2 £ XB(v) and 0 £ y2 £ Xft(y).

Also in this case, xB(v) + <: (1 - e m )2 when 0 £ v £ vB and
2 20 £ y £ v*. Hence the maximum of G(x , y ; v) can be attained 

only if:
1° x2 = 0 and y2 = 0 ,
2° x2 = XB(v) and y2 = 0,

3° x2 = XB(v) and y2 = (1 - e'm )2 - XB(v),

4° x2 = (1 - e~m )2 - XA(y) and y2 = XA(y),

5° x2 = 0 and y2 = XA(y),
with that 0 £ v £ vB and 0 £ y £ v*.

It is evident that, in relation to case (c), only the inter
vals of variability of v and y have changed.

£. Let m £ m. Finally, consider the case when v = v(0) is 
the root of eguation (1 2 ), whereas y = y(G) - the root of equa



tion (12'). Then from (17) we have v0 £ v S m and v0 S p £ m, and 
from Lemma B it follows that

0 S x2 £ X0 (v) and 0 S y2 S X0 (p).

It can be demonstrated that X0 (v) + X0 (p) 2 (1 - e- m )2 when v0 2 
S v £ m and O0 Z p S m. So, the maximum of G(x , y ; v) can be 
attained only if:
1° x2 = 0 and y2 = 0 ,
2° x2 = Xg(v) and y2 = 0,

3° x2 = XB(v) and y2 = (1 - e"m )2 - X0 (v),

4° x2 = (1 - e- m )2 - X0 (p) and y2 = X0 (p),

5° x2 = 0 and y2 = X0 (p),

with that v0 2 v £ m and v0 2 p S m.
Summing up cases a-f, we shall next obtain the suitable func

tions of the variable v, mentioned of earlier, whose maxima can 
realize the sought-for maximum of the functional G(F).

From cases a.l°, b.l° and d.l° as well as from (11) and 
(2 0 ') we have, for m > 0 ,

G(x2, y2; v) S ^(v)
where
(22) cA^v) = |[4(me'2m - ve"2v) - (1 - e"2m)]2, 0 S v S v*.

From cases c.l°, e.l° and f.l° as well as from (13) and 
(2 0 ') we obtain, for m > 0 ,

G(x2, y2; v) 2 ^(v)

where
(23) iB^v) = j[2(2v + 1 )e_2v - (1 + e"2m)]2, 0 2 v 2 m.

Cases a.2°, b.2° and d.2° as well as (11), (18) and (20') 
yield, for m > 0 ,

G(x2, y2; v) 2 tA2(\>)
where

(24) t42(v) = m<me'2,n “ \'e"2v) + ^[(3m - 4) (me"2ln - ve"2v)
+ 1 - e-2m]2, 0 2 v 2 v*.



Cases c.2°, e.2° and f.2° as well as (13), (19) and (20) 
give, for m > 0 ,

G(x2 , y2; v) £ 2 (v )
where
(25) i02 (v) = [(v + 1)e-v - e- m ] 2 + ^[(3\>2 + 2\> + l)e"2v

- 6 (v + l)e_ve'm + 4e"2m + l]2, 0 £ v £ m.

From cases a.3°, b.3° and d.3° as well as from (11), (18) 
and (2 0 ') we get, for m > 0 ,

G(x2, y2; v) £ cAj (v)
where
(26) t/t3 (v) = (1 - e'm )2 + [(3m - 2)(me_2m - ve~2v)

- (1 - e"m )(l - 2e"m )]2, 0 £ v £ v*.
From cases c.3°, e.3° and f.3° as well as from (13), (19) 

and (20 ) we have, for m > 0 ,

G(x2, y2; v) £ 3&3 (v)
where
(27) S 3 (v) = (1 - e"m )2 + [(3v2 + 4\> + 2)e"2v

- 6 (v + 1)e”ve-m + 4e"2m - (1 - e"m )(l - 2e"m)]2,
0 £ v £ m.

By taking account of relation (14), it is not difficult to 
check that:
from cases a.4°, c.4° and e.4° we shall obtain, for m > 0 ,

G(x2, y2; y) £ «43 (y), 0 £ y £ v*,
where cÂ is defined by formula (26); 
cases b.4°, d.4° and f.4° will yield, for m > 0 ,

G(x2, y2; y) £ ^ 3 (y), 0 £ y £ m,
being defined by (27); 

from cases a.5°, c.5° and e.5° we shall get, for m > 0 ,

G(x2, y2; y) £ c42 (y), 0 £ y £ v*,
c4-2 being defined by (24);



cases b.5°, d.5° and f.5° will give, for m > 0 ,
G(x2, y2; p) £ £ 2 (p), 0 £ p 2 m,

with i8 2 defined by (25).
In consequence, the above considerations imply that, for a 

fixed m > 0 ,

G(x2, y2; v) 2 max (e4k(v), J5k( v), k = 1, 2, 3}
if v e <0 , v*>,

whereas
G(x2, y2; v) £ max (®k(v), k = 1, 2, 3} if v e (v*, m>.

4. In this section we shall occupy ourselves with the exami
nation of the functions c4k, i8 k, k = 1, 2, 3; namely, we shall 
determine the maxima of the functions c/*k(v), 0 £ v £ v* and 
0 £ v S m, for any fixed m > 0 .

In an easy way, from (22) and (23) one obtains, for m > 0,

(28)

where

(29)

c41(\)) So^fv*) 5«4*1 *(m), 

¿3. (v) s J8. (0 ) = cA(1) (m),

v 6 <0 , v*>, 

v e <0 , m>,

( 1 ) , -2m. 2 m > 0 .

Examining the function c42 (v) given by (24), for 0 S v £ v*, 
we get (cf. [5])

when 0 < m i mj, 
when m^ < m S m2, 

when m > m2,

tA-2 (v) S cA2 (0) = c4(2) (m)
(30) cA2(v) £ c42 (v*) = c4-(1 )(m)

&4-2 (v) £ *42 (0) s <A(2) (m)

where e4^(m) is given by (29), whereas

(31) tA(2 )(m) = m2e"2m + j[(3m2 - 4m - 1)< 
and m^, m2 are the roots of the equation c>4̂ 2 ,(m) - o^'tm) = 0 ,

e (0,28; 0,3), m2 e (0, 5; 0, 54).
The investigation of the function 432 (v) given by formula (25) 

is very arduous. Proceeding similarly as in paper [5], one can

-2m I]2,



prove that i8 2 a decreasing function of the variable v e <0 , m> 
if 0 < m £ log 6 ; whereas if m > log 6 , then -®2 (v) has a local 
maximum at a point vQ where vQ, vQ e (0 , m), is the only root 
of the eguation $ 2 <v) = 0. Conseguently,

i®2 (v) £ JSj(0 ) 3 iQ^^m) when 0 < m £ log 6 ,
(32)

£ 2 (v) £ $2 ( )  when m > log 6 ,
where
(33) £ (1 )(m) = (1 - e- m )2 + [(1 - e"m )(l - 2e"m )]2,

(34) ^ 2 (vo) = C(vo + 1)e V° ' e"mJ2

+ ±[(3v2 + 2vo + 1)e 2V°

- 6 ( v q  + 1)e V°e'm + 4e'2m + l]2, 

while vQ, vQ e (0 , m), is the root of the eguation

(35) 2[(v q  + 1 )e V° - e“m] + [( 3v q  - l)e ° - 3e"m]

_ ~2v -v
* [(3^ + 2vq + l)e ° - 6 (vQ + l)e °e"m

+ 4e-2m +1] =0.
In turn, examining the function <A3 (v) given by (26), for 

0 £ v S v*, we obtain

c43 (v) £ <A3 (v*) = «(1 )(m) when o < m S |,
/ -a \ 2(36) cA3 (v) S <*3 (0 ) = tAK Mm) when j < m S m3,

tAj(v) S cA3 (v*) = ¡8(1 )(m) when m > m3, 

where jfi^tm) is defined by (33),

c4(3 )(m) = (1 - e”m )2 + [(3m - 2)me_2m

- (1 - e"m)(l - 2e"n’)]2,

while m3 is the root of the eguation eA(3 *(m) - 39*̂ (m) = 0 , 
m3 e (0,7; 0 ,8 ).



To finish with, let us examine the function ¿8 3 (v) given by 
formula (27), for 0 £ v £ m, m > 0 .  In paper [5], only its 
partial examination was carried out, namely, with a fixed m > log 3 

We have

$'3 (v) = -4ve-vg(\i)h(v)
where

g(v) = (3v + l)e"v - 3e"m ,

h(v) = (3v2 + 4\> + 2)e-2v - 6 ( v  + l)e-ve'm

+ 4e_2m - (1 - e-m)(1 - 2e”m ), 0 S v S m.

Note that if 0 < m <|, then g(v)S 0, 0 S v S m. If m i  log 3, then 

g(v)20, 0 £ v £ m. If y < m < log 3, then the function g(v) 

has exactly one zero e (0, y). Since h'(\>) = -2ve“vg(v), it

suffices to examine the values of h(0) and h(m). It can be shown 
that h(0 ) 2 0 when 0 < m £ log 2 and h(0 ) > 0 when m > log 2 . 
Whereas h(m) £ 0 when 0 < m £ m4 and m Z mg and h(m) > 0 when 
m^ < m < mg, with m^, m^ being the roots of the equation h(m) = 
= 0, m4 < j, m5 e (log 2, log 3). Making use of the form of the 
derivative of the function iSj(v), we shall obtain that:

- if 0 < m £ m4, then ¿83 (v) is a decreasing function of the 
variable v ;

2- if m4 < m i j, then iS3 (v) has a local minimum at the point 
\>2 where h(v2) = 0 , v2 e (0 , m);

2- if y < m £ log 2 , then has a local minimum at the 
point \>2, h(v2) = 0 , and $j(v) has a local maximum at the 
point where gtv^ = 0 , v 2 <

- if log 2 < m j m^, then £j(v) has a local maximum at the 
point vx, giVĵ ) = 0 ;

- if nig < m < log 3, then iSj(v) has a local maximum at the 
point v^, g(v1) = 0 , and ^(v) has a local minimum at the 
point \j2 where h(\>2) = 0 , vi < v2»‘



■ if m i log 3, then $ 3 (v) has a local minimum at the point 
v2 where h(v2) = 0 .

Hence and from the examination of the values of the function 
^ 3 (v) at the points v = 0 and v = m we shall finally get

Æ 3 (v) £ ^ 3 (0 ) = when 0 < m £ -,

(37) ^(v) £ Æj(v^) when j < m < log 3,

Æ 3 (v) i ^ 3 (0) = ^ * 1 '(m) when m Z log 3, 

where Æ ^ i m )  is given by formula (33), while

^ 3(V;L) = (1 - e- m )2 + [( 3v2 + 4vx + 2)e 2^1

- 6 ^  + 1 )e ',1e"m + 4e'2m

- (1 - e_ m )(1 - 2e-m)J 2,

being the only root of the equation g(v) = 0 , i.e.

(3vx + 1)e Vl - 3e"m =0, V;l e (o, |).

We have thus determined the maxima of the functions cA 
k = 1, 2, 3, for all values of m > 0.

5. We shall next carry out a comparison of the estimates 
of the functions ( A 8̂^ obtained, for suitable values of m. 
Before we proceed to this, let us observe that the functions c43<\>) 
and $ 3 (v) given by formulae (26) and (27), respectively, have been

2 2 —m 2obtained in the case when x + y = (l - e ) , m > 0 (compare 
a-f in section 3). It is known from the estimate of the coef
ficient A2 = -2(x + iy) in the class S(M), log M = m, that this 
eguality is possible only for the Pick function w = P(z, M) = 
s PE(z, em ) given by equation (5). The coefficients A2, A3 of 
this function are defined by the formulae

A2 = 2e(e_m - 1 ),

A3 = e2(e m - l)(5e m - 3), |e| =1, m = log M.
Putting F = Pe<z/ em)f from (7) we shall get



G(P£(z, em)) = (1 - e- m )2

+ [(1 - e“ra)(l - 2e'm )cos 2<J.J2,

e = e^*, 0 2 <t> £ 2tt.
It is easily verified that

(38) G(P (z, em )) 2 max G(P (z, em )) = (1 - e- m )2
|c|-l

+ [(1 - e"m )(l - 2e-m)J 2,

the last equality holding for $ = ly, 1 = 0 ,  1, 2, 3.

On the other hand, as we have mentioned above, for any v e
e <0 , v*> and m > 0 , there should exist an e^, |ê | = 1 , such
that cA (v) = G(P (z, em)). Thus (38) implies that we may take j ‘"I
into consideration only those v and m for which

(39) c4,(v) £ max G(P„ (z, em ) ) = (1 - e'm )2
3 1^ 1=1 £ 1

+ [(1 - e"m )(l - 2e_m)]2.
2In consequence, in the case y < m 2 m3, estimate (36) contra

dicts (39) because it can be checked thate4*3 *(m) 2 (1 - e"m )2 + 

+ [(1 - e-m) (1 - 2e‘m )]2 for | < m i m3> Since ^ (1 )(m) =

= (1 - e m )2 + [(1 - e m)(l - 2e-m)]2, therefore, of course, the 
remaining two estimates in (36) satisfy condition (39).

Analogously, for any v e <0, m> and m > 0, there should exist 
an e2, |e2| = 1, such that <8 *3 *(v) = G(Pe (z, em)). Consequently,

(38) implies that we may take into account only those v and m for 
which

(40) J3,(v) 2 max G(Po (z, em )) = (1 - e'm )2
|t, | - 1 e 2

+ [(1 - e~m ) (1 - 2e_n1)]2.
2If j < m < log 3, then from the examination of the function 

353 (v) it follows that, in (37), also ^(Vj) > (1 - e- m )2 + [(1 -
- e m )(l - 2e m )]2, which, in virtue of (40), is impossible. The



remaining two estimates in (37) evidently satisfy condition
(40).

The above remarks do not concern, of course, the remaining 
functions, i.e. c^^tv), &4-2 (v)» J&^iv), # 2 (v)» given by formulae
(22), (24), (23), (25), respectively (cf. a-f). So, taking account 
of estimates (28), (30) and (32) obtained for them and of the 
above conclusions concerning estimates (36) and (37), we shall get 
that, for any function F e S(M), M = em ,

G(F) £ maxM* 1 *(m),cA*2 *(m), 1 * (m) } 
when m e  (0, m^> U (m2, log 6>,

G(F) S max{c4(1) (m), * (1) (m)} 
when m e (n̂ , m2>,

G(F) 2 max{cA(1) (m), c4-(2) (m), £ (1> (m), ^ 2 (vq) } 
when m e (log 6 , +=>).

Let us first notice that, for each m > 0, the inequalities

cA(1 )(m) S cA(2 )(m) < £(1 )(m) 
hold. Whereas from the examination of the function & 2 (v) defined 
by (25), carried out in section 4, it follows that

r6 *1 ’(m) < sS2 (vQ) when m > log 6 .

So, we have finally obtained that, for each function F e S(M), 
M = em > 1, the following estimate of functional (7) takes place:

(41) G(F) S •
ffo' (m ) when 0 < m £ log 6 ,

& 2(vq) when m > log 6 ,

where SS^fm), jQ2 (vQ) are defined by formulae (33), (34), res
pectively, with vQ being the only root of equation (35).

It still remains to prove that estimate (41) we have obtained 
is sharp for each m > 0 .  If m e ( 0 ,  log 6>, the equality in
(41) takes place for the Pick function defined by equation (5) 
for e = ±1 , e = ±i, m = log M.

In order to show that, also for m > log 6 , estimate (41) in 
the class S(M) is sharp, it is enough to prove, in view of c.2°,



e.2°, f.2° from section 3 and on account of Lemma B, that there
2exists a function 0 *(x), 0 £ t £ m, for which y = 0 , i.e.

m 
f
o

and | X -̂ ( t ) | = X ( t ).

S  e-T sin 0 *(x)dx = 0

Let vQ, v e (0, m), be a solution of equation (35), where
as 0 *(x) a function defined by the formulae

cos 0 *(i) =

Then

e for 0 £ x £ v .o
1 for vQ £ x £ m.

sin 0*(x) =
/ 2 <T-vo>' ±/l-e for 0 £ x £ vQ, 

for vQ £ x £ m,
whence one can easily obtain the formulae for the function k*(x) = 

i0,(x)
= e and, in consequence, determine the respective solution
F* e S(M) of the Lowner equation. Of course, **(t) -
= e T cos 0 *(x) = X(x).

By choosing different signs in portions of the interval 
<0, vQ>, one can make condition (42) be satisfied. Indeed, let us 
consider, for instance, the function

>(x) = S  e 
o

x e <0 , vQ>.

2 (x-v y
dx - S  

x
v °  r 2 (t-0 '

dx,

It is continuous in the interval <0, vQ>, <i(0) < 0, ♦(''q) > 
thus there exists a point xQ e (0 , vQ) such that <(>(xQ) = 0 . 
Putting then

sin 0 *(x) =

for 0 £ x £ xQ,

for x„ £ x £ v„,o o
for vQ £ x £ m,

we finally obtain condition (42).



We have thus shown that, for each M > 1, there exist functions 
of the classes S(M) realizing the eguality of estimate (41), 
with that m = log M. Thereby, (41), (7) and (3) imply the fol
lowing

THEOREM. If H is any function of form (1) from the class 
S(2 )(/JD, then the following estimates hold:

(43) |C,r + I Cc

(1 - S )2 + [(1 - M )(1 - I ^ 2 
when 1 < M £ 6 ,

[<vo + l)e V° - i] 2 + I [ ( 3v 2 + 2vo + l)e 2V°

- + D e  ° + 4  + 1]'M
when M > 6 ,

where v q  e (0, log M) is the root of the eguation

2 [(v + l)e'v - jjp + [(3v - 1 )e-v - |][(3v2 + 2v + 1)<

| ( v  + l)e~v + -f + 1] = 0 . 
M

For each M > 1, there exist functions of the class S*2 (̂/ti) for 
which the eguality sign in (43) takes place.

REMARK. It can be shown that if M ■* “, then the root v ofo
equation (35), tends to zero. Consequently, from (43) it follows 
that, for each function H e S*2' ([4]),

|C3I 2 + |C5 |2 S 2.
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Oznaczmy przez S(M), M > 1, rodziną funkcji jednolistnych, holomorficznych 
w kole E = (z: |z | <1} postaci
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0 OSZACOWANIU PEWNEGO FUNKCJONAŁU 
W KLASIE OGRANICZONYCH NIEPARZYSTYCH FUNKCJI JEDNOLISTNYCH

F(z) = z + A_z2 + ... + A z11 + ...,2 n
spełniających w kole E warunek |F(z)| < M, M > 1. Przez S^2\ >/Tf) oznaczmy 
klasę funkcji jednolistnych, nieparzystych, postaci

spełniających w kole E warunek |H(z)| < /if, M > 1.
Oczywiście, dla każdej funkcji F € S(M) funkcja H(z) = /f(z2) należy do 

S*2 (̂ /H) i na odwrót.
W pracy dowodzi się, że ma miejsce następujące

Twierdzenie. Jeżeli H jest dowolną funkcją klasy , to zachodzą
następujące oszacowania

lc3i2 + I c512 < •
(1 - fi)2 + [(1 - fi)*1 - fi>]2* ßdy 1 < M < 6,

[(V0 + D e  ° - £]2 + ±[(3v2 + 2vo + l)e ^  - 

"V° + + l] , gdy M > 6,
M



gdzie V^ E (0, log M) jest pierwiastkiem równania

2[(v + l)e*V - i ]+ [(3v - l)e'V - [(3v2 + 2v + l)e'2v -

- S(V + 1)e"V + ~2 + “ °*" M
( 2 )Dla każdego M > 1 istnieją funkcje klasy S (VS), dla których ma miejsce 

znak równości w powyższym oszacowaniu.


