Krystyna Zyskowska
 ON AN ESTIMATE
 OF SOME FUNCTIONAL IN THE CLASS OF ODD BOUNDED UNIVALENT FUNCTIONS

Let us denote by $S(M), M>1$, the family of functions of the form $F(z)=z+A_{2} z^{2}+\ldots+A_{n} z^{n}+\ldots$,
univalent and holomorphic in the disc $E=\{z:|z|<1\}$ and satisfying in it the condition $|F(z)|<M, M>1$. Denote by $S^{(2)}(\sqrt{M})$ the class of odd univalent functions of the form

$$
H(z)=z+C_{3} z^{3}+C_{5} z^{5}+\ldots+C_{2 n+1} z^{2 n+1}+\ldots,
$$

satisfying in E the condition $|H(z)|<\sqrt{M}, M>1$.
Of course, for each function $F \in S(M)$, the function $H(z)=$ $=\sqrt{F\left(z^{2}\right)}$ belongs to $S^{(2)}(\sqrt{M})$, and vice versa.

In the paper, it is proved that the following theorem takes place.
THEOREM. If H is any function of the class $S^{(2)}(\sqrt{M})$, then the following estimates

$$
\left|C_{3}\right|^{2}+\left|C_{5}\right|^{2} \leq\left\{\begin{array}{l}
\left(1-\frac{1}{M}\right)^{2}+\left[\left(1-\frac{1}{M}\right)\left(1-\frac{2}{M}\right)\right]^{2} \\
\text { when } 1<M \leq 6, \\
{\left[\left(v_{0}+1\right) e^{-v_{0}}-\frac{1}{M}\right]^{2}+\frac{1}{4}\left[\left(3 v_{0}^{2}+2 v_{0}+1\right) e^{-2 v_{0}}\right.} \\
\left.-\frac{6}{M}\left(v_{0}+1\right) e^{-v_{0}}+\frac{4}{M^{2}}+1\right]^{2} \\
\text { when } M>6
\end{array}\right.
$$

hold, where $\nu_{0} \in(0, \log M)$ is the root of the equation

$$
2\left[(v+1) e^{-v}-\frac{1}{M}\right]+\left[(3 v-1) e^{-v}-\frac{3}{M}\right]
$$

$$
\left[\left(3 v^{2}+2 v+1\right) e^{-2 v}-\frac{6}{M}(v+1) e^{-v}+\frac{4}{M^{2}}+1\right]=0
$$

For each $M>1$, there exist functions of the class $S^{(2)}(\sqrt{M})$ for which the equality sign in the above estimate takes place.

1. Let us denote by S the family of functions of the form

$$
F(z)=z+A_{2} z^{2}+A_{3} z^{3}+\ldots+A_{n} z^{n}+\ldots,
$$

univalent and holomorphic in the disc $E=\{z:|z|<1\}$.
Let $S^{(2)}$ stand for the class of odd univalent functions having in E the expansion

$$
\begin{equation*}
H(z)=z+C_{3} z^{3}+C_{5} z^{5}+\ldots+C_{2 n+1} z^{2 n+1}+\ldots \tag{1}
\end{equation*}
$$

It is known that $H \in S^{(2)}$ if and only if there exists a function $F \in S$ such that

$$
\begin{equation*}
H(z)=\sqrt{F\left(z^{2}\right)}, \quad z \in E . \tag{2}
\end{equation*}
$$

Let $S(M), M>1$, be a subclass of S of functions satisfying in the disc E the condition $|F(z)|<M$. Denote by $S^{(2)}(\sqrt{M})$ the class of univalent functions of form (1), bounded by \sqrt{M}, that is, $|H(z)|<\sqrt{M}, z \in E$. Of course, for any function $F \in S(M)$, the function H defined by relationship (2) belongs to the class $S^{(2)}(\sqrt{\mathrm{M}})$, and vice versa.

Making use of this relationship, we get

$$
\begin{equation*}
C_{3}=\frac{1}{2} A_{2}, \quad C_{5}=\frac{1}{2}\left(A_{3}-\frac{1}{4} A_{2}^{2}\right) . \tag{3}
\end{equation*}
$$

From the well-known estimate of the modulus of the coefficient A_{2} in the class $\mathrm{S}(\mathrm{M})$ ([3]) one knows that

$$
\begin{equation*}
\left|C_{3}\right| \leq 1-\frac{1}{M}, \quad M>1 \tag{4}
\end{equation*}
$$

with the equality in (4) holding only for the Pick function $w=$ $=P(z, M), P(0, M)=0$, given by the equation

$$
\begin{equation*}
\frac{M^{2} W}{(M+\varepsilon W)^{2}}=\frac{z}{(1+\varepsilon z)^{2}}, \quad z \in E, \quad|\varepsilon|=1 \tag{5}
\end{equation*}
$$

One also knows the estimate of the functional $\left|A_{3}-\alpha A_{2}^{2}\right|$, for any real α, in the class $S(M)\left([1],\left[1^{-}\right]\right)$; in the case $\alpha=\frac{1}{4}$, the maximum of this functional is not attained for the Pick function.

The aim of our paper is to determine the maximum of the functional

$$
\begin{equation*}
f(H)=\left|c_{3}\right|^{2}+\left|c_{5}\right|^{2} \tag{6}
\end{equation*}
$$

in the classes $S^{(2)}(\sqrt{M})$ for $M>1$.
In the full class $S^{(2)}$, functional (6) was estimated by M. S. $\mathrm{R} \circ \mathrm{bertson}$ [4].

In paper [5] we obtained a partial result, namely, an estimate of the maximum of the functional $\mathcal{F}(H)$ in the classes $S^{(2)}(\sqrt{M})$ for $M \geq 3$. The method applied there brought about difficulties in the investigation of this functional for the remaining M, that is, $M \in(1,3)$.

In the present paper we obtain a final result, i.e. an estimate of functional (6) from above for all $M>1$; of course, for $M \geq 3$, the result is the same as that in [5].

In the proof, use is made again of some general lemmas proved in [1], special corollaries following from them and the properties of the functional considered itself. The basic modification of the procedure from [5], arisen, among other things, after many discussions with Z. J. J a k ubowski, consists mainly in a skilful use of the above-mentioned lemmas and other estimates of some well-known functionals. On account of the method applied, our reasoning is carried out for all $M>1$; therefore, unfortunately, it turns out to be indispensable to repeat some fragments of paper [5].
2. Note that (3) and the properties of the classes $S(M)$ imply that the determination of the maximum of functional (6) is equivalent to the determination of the maximum of the functional

$$
\begin{equation*}
G(F)=\frac{1}{4}\left|A_{2}\right|^{2}+\left[\operatorname{Re} \frac{1}{2}\left(A_{3}-\frac{1}{4} A_{2}^{2}\right)\right]^{2}, \quad F \in S(M), \quad M>1 \tag{7}
\end{equation*}
$$

Evidently, for the purpose, it is sufficient to determine the upper bound of the functional $G(F)$ in the subclass $S^{*}(M)$ of $S(M)$ of functions of the form (cf. [2])

$$
F(z)=\lim _{t \rightarrow m} e^{t} f(z, t), \quad m=\log M,
$$

where $f(z, t)$ is a holomorphic function of the variable z in the disc $E,|f(z, t)|<1$ for $z \in E, f(0, t)=0$ and $f_{z}^{\prime}(0, t)>0$, and $f(z, t)$ is, for $0 \leqq t \leqq m$, a solution of the Löwner equation

$$
\frac{\partial f}{\partial t}=-f \frac{1+k f}{1-k f},
$$

satisfying the initial condition $f(z, 0)=z$. The function $k=$ $=k(t),|k(t)|=1$, is any function continuous in the interval <0, m> except a finite number of points of discontinuity of the first kind.

Since the coefficients A_{2} and A_{3} of functions of the class S*(M) are expressed by the formulae ([2], [1]):

$$
\begin{aligned}
& A_{2}=-2 \int_{0}^{m} e^{-\tau} k(\tau) d \tau, \\
& A_{3}=-2 \int_{0}^{m} e^{-2 \tau} k^{2}(\tau) d \tau+4\left(\int_{0}^{m} e^{-\tau} k(\tau) d \tau\right)^{2}, \quad m=\log M,
\end{aligned}
$$

therefore it follows from (7) that we ought to determine the maximum of the expression

$$
\begin{align*}
G(F) & =\left(\int_{0}^{m} e^{-\tau} \cos \theta(\tau) d \tau\right)^{2}+\left(\int_{0}^{m} e^{-\tau} \sin \theta(\tau) d \tau\right)^{2} \tag{8}\\
& +\frac{1}{4}\left\{3\left(\int_{0}^{m} e^{-\tau} \cos \theta(\tau) d \tau\right)^{2}-3\left(\int_{0}^{m} e^{-\tau} \sin \theta(\tau) d \tau\right)^{2}\right. \\
& \left.-4 \int_{0}^{m} e^{-2 \tau} \cos ^{2} \theta(\tau) d \tau+1-e^{-2 m}\right\}^{2}
\end{align*}
$$

where $\theta(\tau)=\arg k(\tau), \quad \theta(\tau) \in\langle 0,2 \pi\rangle$, over all possible functions $k(\tau)$ satisfying the assumptions of the Löwner theorem.

In the further part of the paper, we shall make use of the lemmas from [1], mentioned of in the introduction.

LEMMA A. If: $1^{\circ} \lambda$ is any real function of a real variable τ, defined and continuous in the interval <0, $m>$ except a finite number of points of discontinuity of the first kind, $2^{\circ}|\lambda(\tau)| \leq$ $\leq e^{-\tau}$ for $\tau \in\langle 0, m\rangle$ and 3°
(A.1) $\int_{0}^{m} \lambda^{2}(\tau) d \tau \leq m e^{-2 m}$,
then
(A.2) $\left(\int_{0}^{m} \lambda(\tau) d \tau\right)^{2} \leqq m\left(m e^{-2 m}-v e^{-2 v}\right)$
where $v, 0 \leqq v \leqq m$, is the root of the equation
(A.3) $\int_{0}^{m} \lambda^{2}(\tau) d \tau=m e^{-2 m}-v e^{-2 v}$.

For each $v \in\langle 0, m\rangle$, there exists a constant function $\lambda(\tau)=c$ such that in (A. 2) the equality holds. Then the relation $\mathrm{mc}^{2}=$ $=m e^{-2 m}-v e^{-2 v}$ should take place.

LEMMA B. If a function λ satisfies assumptions 1° and 2° of Lemma A and the condition
(B.1) $\int_{0}^{m} \lambda^{2}(\tau) d \tau \geq m e^{-2 m}$,
then
(B.2) $\left|{\underset{0}{f}}_{m}^{f} \lambda(\tau) d \tau\right| \leq(v+1) e^{-v}-e^{-m}$
where $v, 0 \leq v \leq m$, is the root of the equation
(В. 3) $\int_{0}^{m} \lambda^{2}(\tau) d \tau=\left(v+\frac{1}{2}\right) e^{-2 v}-\frac{1}{2} e^{-2 m}$.

Estimate (B.2) is sharp for every v and the equality sign occurs only if $\lambda(\tau)= \pm \varkappa(\tau)$ where

$$
\mathcal{H}(\tau)= \begin{cases}e^{-v} & \text { for } 0 \leq \tau \leq v \\ e^{-\tau} & \text { for } v \leq \tau \leq m\end{cases}
$$

Put $A_{2}=-2(x+i y)$, that is,

$$
x=\int_{0}^{m} \lambda_{1}(\tau) d \tau, \quad y=\int_{0}^{m} \lambda_{2}(\tau) d \tau
$$

$$
\lambda_{1}(\tau)=e^{-\tau} \cos \theta(\tau), \quad \lambda_{2}(\tau)=e^{-\tau} \sin \theta(\tau) .
$$

From the properties of the function $k(\tau)$, the definition of the function $\theta(\tau)$ and from (9) it follows that the functions $\lambda_{1}(\tau), \lambda_{2}(\tau)$ satisfy assumptions $1^{\circ}-2^{\circ}$ of Lemma A and, moreover, either (A.1) or (B.1).

Let $v=v(\theta)$ be the root of the equation

$$
\begin{equation*}
\int_{0}^{m} \lambda_{1}^{2}(\tau) d \tau=\Omega_{\mathbf{A}}(v) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{A}(v)=m e^{-2 m}-v e^{-2 v,} \quad 0 \leq v \leq v^{*}, \tag{11}
\end{equation*}
$$

with that $v^{*}=m$ when $0<m \leq \frac{1}{2}$ or $m e^{-2 m}-v^{*} e^{-2 v^{*}}=0$ when $m>\frac{1}{2}$, or the root of the equation

$$
\begin{equation*}
\int_{0}^{m} \lambda_{1}^{2}(\tau) d \tau=\Omega_{B}(\nu) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{B}(v)=\left(v+\frac{1}{2}\right) e^{-2 v}-\frac{1}{2} e^{-2 m}, \quad 0 \leq v \leq m . \tag{13}
\end{equation*}
$$

Evidently, the function $\Omega_{A}(v)$ satisfies condition (A.1) of Lemma A, whereas $\Omega_{B}(\nu)$ - condition (B.1) of Lemma B.

Analogously, let $\mu=\mu(\theta)$ be the root of the equation

$$
\int_{0}^{m} \lambda_{2}^{2}(\tau) d \tau=\Omega_{A}(\mu)
$$

$$
0 \leq \mu \leq v^{*}
$$

or of the equation

$$
\int_{0}^{m} \lambda_{2}^{2}(\tau) d \tau=\Omega_{B}(\mu), \quad 0 \leqslant \mu \leqslant m
$$

where Ω_{A}, Ω_{B} are defined by the formulae (11), (13), respectively
Of course, for all admissible $\theta(\tau)$,

$$
\begin{equation*}
\int_{0}^{m} e^{-2 \tau} \sin ^{2} \theta(\tau) d \tau=\frac{1}{2}\left(1-e^{-2 m}\right)-\int_{0}^{m} e^{-2 \tau} \cos ^{2} \theta(\tau) d \tau \tag{14}
\end{equation*}
$$

Note that if $m \in(0, \hat{m}>$ where \hat{m} is the root of the equation

$$
\begin{equation*}
\frac{1}{2}\left(1-e^{-2 m}\right)=2 m e^{-2 m} \tag{15}
\end{equation*}
$$

then the equation
(11 $\left.)^{\prime}\right) \quad \Omega_{A}(v)=\frac{1}{2}\left(1-e^{-2 m}\right)-m e^{-2 m}$ possesses exactly one root $\hat{v}_{A} \in\left(0, v^{*}\right)$.

If $m \in(\hat{m},+\infty), \hat{m}$ is defined by (15), then the equation
(13 $\left.{ }^{-}\right) \quad \Omega_{B}(v)=\frac{1}{2}\left(1-e^{-2 m}\right)-m e^{-2 m}$
possesses exactly one root $\hat{v}_{B} \in(0, m)$.
Examining the functions $\Omega_{A}(v), \Omega_{B}(v), \quad \frac{1}{2}\left(1-e^{-2 m}\right)-\Omega_{A}(v)$,
$\frac{1}{2}\left(1-e^{-2 m}\right)-\Omega_{B}(v)$ and making use of (14), we shall obtain the relations below:

$$
\text { if } 0<m \leq \hat{m} \text {, }
$$

then

$$
\mu= \begin{cases}\Omega_{A}^{-1}\left[\frac{1}{2}\left(1-e^{-2 m}\right)-\Omega_{B}(v)\right] & \text { where } 0 \leq v \leq m, \tag{16}\\ \Omega_{A}^{-1}\left[\frac{1}{2}\left(1-e^{-2 m}\right)-\Omega_{A}(v)\right] \quad \text { where } & 0 \leq \nu \leq \hat{v}_{A^{\prime}} \\ & 0 \leq \mu \leq \hat{v}_{A^{\prime}} \\ \Omega_{B}^{-1}\left[\frac{1}{2}\left(1-e^{-2 m}\right)-\Omega_{A}(v)\right] \quad \text { where } & \hat{v}_{A} \leq v \leq v^{*}, \\ & 0 \leq \mu \leq m ;\end{cases}
$$

if $\mathrm{m} \geqq \hat{\mathrm{m}}$, then

$$
\mu= \begin{cases}\Omega_{A}^{-1}\left[\frac{1}{2}\left(1-e^{-2 m}\right)-\Omega_{B}(v)\right] & \text { where } \tag{17}\\ \Omega_{B}^{-1}\left[\frac{1}{2}\left(1-e^{-2 m}\right)-\Omega_{B}(v)\right] \quad \text { where } & 0 \leq v \leq \hat{v}_{B} \leq v \leq v^{*} \\ & \hat{v}_{B} \leq \mu \leq m, \\ \Omega_{B}^{-1}\left[\frac{1}{2}\left(1-e^{-2 m}\right)-\Omega_{A}(v)\right] \quad \text { where } & 0 \leq v \leq v^{*}, \\ & 0 \leq \mu \leq \hat{v}_{B^{\prime}}\end{cases}
$$

$\hat{m}, \hat{v}_{A}, \hat{v}_{B}$ being defined by equations (15), (11), (13 ${ }^{\circ}$), respectively.

If we use Lemmas A, B as well as (9), we shall get an estimate for $x^{2}=\frac{1}{4}\left(\operatorname{Re} A_{2}\right)^{2}$. Moreover, taking account of the above properties of the functions $\Omega_{A}(\mu), \Omega_{B}(\mu)$ and equality (14), we shall also get the respective estimate for $y^{2}=\frac{1}{4}\left(\operatorname{Im} A_{2}\right)^{2}$.

Consequently, if condition (A.1) holds, then, in virtue of (A.3), (A.2) and (9), we have

$$
0 \leq x^{2} \leq x_{A}(v)
$$

where

$$
\begin{equation*}
x_{A}(v)=m\left(m e^{-2 m}-v e^{-2 v}\right) \tag{18}
\end{equation*}
$$

The function $X_{A}(v)$ is decreasing in the interval $\left\langle 0, v^{*}\right\rangle$, and let us recall that $v^{*}=m$ when $0<m \leqq \frac{1}{2}$ or $m e^{-2 m}-v^{*} e^{-2 v^{*}}=0$ when $m>\frac{1}{2}$. Besides, $0 \leq X_{A}(v) \leqq m^{2} e^{-2 m}$.

If condition (B.1) holds, then, in virtue of (B.3), (B.2) and (9), we have

$$
0 \leq x^{2} \leq X_{B}(v)
$$

where

$$
\begin{equation*}
x_{B}(v)=\left[(v+1) e^{-v}-e^{-m}\right]^{2} \tag{19}
\end{equation*}
$$

The function $X_{B}(v)$ is decreasing in the interval $\langle 0, m\rangle$. Besides $m^{2} e^{-2 m} \leq X_{B}(v) \leq\left(1-e^{-m}\right)^{2}$.

From (16) or (17), for fixed m and v, we can determine the value μ corresponding to them; using again Lemma A or Lemma B, respectively, we shall obtain - in consequence - that, for fixed m and v,

$$
0 \leq y^{2} \leq x_{A}(\mu) \text { or } 0 \leq y^{2} \leq X_{B}(\mu) ;
$$

X_{A}, X_{B} are defined by formulae (18), (19).
The above estimates of the quantities $x^{2}=\frac{1}{4}\left(\operatorname{Re} A_{2}\right)^{2}$ and $y^{2}=\frac{1}{4}\left(\operatorname{Im} A_{2}\right)^{2}$, being consequences of Lemmas A and B, will be made use of in the next section of the paper.
3. The assumptions of Lemmas A and B as well as (9) imply that the function $\lambda_{1}(\tau)$ satisfies either condition (A.1) or (B.1). Since $\lambda_{1}(\tau)=e^{-\tau} \cos \theta(\tau)$, therefore, using the appropriate lemma, we consider some subset of functions $\theta(\tau)$, thus some subset of functions $k(\tau) \quad(\theta(\tau)=\arg k(\tau))$, and in consequence, some subclass of the family $\mathrm{S}(\mathrm{M})$.

From (9) it follows that expression (8) takes the form

$$
\begin{align*}
G(F) & =x^{2}+y^{2}+\frac{1}{4}\left[3 x^{2}-3 y^{2}-4 \int_{0}^{m} e^{-2 \tau} \cos ^{2} \theta(\tau) d \tau\right. \tag{20}\\
& \left.+1-e^{-2 m}\right]^{2}, \quad m=\log N .
\end{align*}
$$

From (9) and estimate (4) we have
(21) $\mathrm{x}^{2}+\mathrm{y}^{2} \leqq\left(1-\mathrm{e}^{-\mathrm{m}}\right)^{2}, \quad \mathrm{~m}>0$.

By using Lemma A or Lemma B and taking account of inequality (21), the problem of determining the maximum of $G(F)$ will be reduced to the investigation of the maxima of some functions of the variable v where v is defined by (10) or (12).

Denote by $G\left(x^{2}, y^{2} ; v\right)$ the right-hand side of (20), i.e.

$$
\begin{align*}
G\left(x^{2}, y^{2} ; v\right) & \equiv x^{2}+y^{2}+\frac{1}{4}\left[3 x^{2}-3 y^{2}\right. \\
& \left.-4 \int_{0}^{m} e^{-2 \tau} \cos ^{2} \theta(\tau) d \tau+1-e^{-2 m}\right]^{2}
\end{align*}
$$

Note first that, for a fixed $v=v(\theta), G\left(x^{2}, y^{2} ; v\right)$ is a convex function of the variables x^{2}, y^{2} and, as such, does not attain its maximum inside the set of variability of x^{2}, y^{2}. Taking account of the properties obtained in section 2 as well as (21), we shall consider six cases in which we determine all possible values of x^{2} and y^{2} for which the function G can attain its maximum.
a. Let $0<m \leq \hat{m}$ where \hat{m} is the root of equation (15). Consider the case when $\nu=\nu(\theta)$ is the root of equation (10), i.e. $\int_{0}^{m} e^{-2 \tau} \cos ^{2} \theta(\tau) d \tau=\Omega_{A}(\nu)$, whereas $\mu=\mu(\theta)$ - the root of equation $\left(10^{\circ}\right)$, i.e. $\int_{0}^{m} e^{-2 \tau} \sin ^{2} \theta(\tau) d \tau=\Omega_{A}(\mu)$, where Ω_{A} is given by formula (11). Then (16) implies that $0 \leq \nu \leq \hat{v}_{A}$ and $0 \leq \mu \leq \hat{v}_{A}$, where \hat{v}_{A} is the root of equation (11). From Lemma A we have

$$
0 \leq x^{2} \leq X_{A}(\nu) \text { and } 0 \leq y^{2} \leq X_{A}(\mu)
$$

where X_{A} is given by (18). It can be verified that $X_{A}(\nu)+X_{A}(\mu \geqq$ $\geq\left(1-e^{-m}\right)^{2}$ when $0 \leq \nu \leq \hat{v}_{A}$ and $0 \leq \mu \leq \hat{v}_{A}$. In consequence, the maximum of $G\left(x^{2}, y^{2} ; v\right)$ can be attained only in the cases when:
$1^{0} x^{2}=0$ and $y^{2}=0$,
$2^{\circ} x^{2}=x_{A}(v)$ and $y^{2}=0$,
$3^{\circ} \quad x^{2}=x_{A}(v)$ and $y^{2}=\left(1-e^{-m}\right)^{2}-x_{A}(v)$,
$4^{\circ} \quad x^{2}=\left(1-e^{-m}\right)^{2}-x_{A}(\mu)$ and $y^{2}=x_{A}(\mu)$,
$5^{\circ} \quad x^{2}=0$ and $y^{2}=X_{A}(\mu)$,
with that $0 \leqq \nu \leqq \hat{v}_{A}$ and $0 \leqq \mu \leqq \hat{v}_{A}$.
b. Let, as above, $0<m \leqq \hat{m}$. Consider the case when $v=$ $=\nu(\theta)$ is the root of equation (10), whereas $\mu=\mu(\theta)$ - the root
of equation (12°). Then it follows from (16) that $\hat{v}_{A} \leq v \leq v^{*}$ and $0 \leq \mu \leq m$. From Lemmas A and B we have, respectively,

$$
0 \leq x^{2} \leq x_{A}(v) \quad \text { and } \quad 0 \leq y^{2} \leq x_{B}(\mu) \text {, }
$$

where X_{A}, X_{B} are defined by formulae (18), (19). It can be shown that $X_{A}(v)+X_{B}(\mu) \geq\left(1-e^{-m}\right)^{2}$ when $\hat{v}_{A} \leq v \leq v^{*}$ and $0 \leq \mu \leqslant m$. Consequently, the maximum of $G\left(x^{2}, y^{2} ; \nu\right)$ can be attained only if $1^{\circ} x^{2}=0$ and $y^{2}=0$,
$2^{\circ} \quad x^{2}=x_{A}(v)$ and $y^{2}=0$,
$3^{0} \quad x^{2}=x_{A}(v)$ and $y^{2}=\left(1-e^{-m}\right)^{2}-x_{A}(v)$,
$4^{\circ} \quad x^{2}=\left(1-e^{-m}\right)^{2}-x_{B}(\mu)$ and $y^{2}=x_{B}(\mu)$,
$5^{\circ} \quad x^{2}=0$ and $y^{2}=x_{B}(\mu)$, with that $\hat{v}_{A} \leq \nu \leq v^{*}$ and $0 \leq \mu \leq m$.
C. Let $0<m \leq \hat{m}$ and let $\nu=v(\theta)$ be the root of equation (12), whereas $\mu=\mu(\theta)$ - the root of equation (10°). Then from (16) we have $0 \leq \nu \leq m$ and $\hat{v}_{A} \leq \mu \leq v^{*}$, and from Lemmas B and A it follows, respectively, that

$$
0 \leq x^{2} \leq x_{B}(v) \quad \text { and } \quad 0 \leq y^{2} \leq x_{A}(\mu)
$$

Also in this case, $X_{B}(v)+X_{A}(\mu) \geq\left(1-e^{-m}\right)^{2}$ when $0 \leq v \leq m$ and $\hat{v}_{\mathrm{A}} \leqq \mu \leqq \nu^{\star}$. Hence the maximum of $\mathrm{G}\left(\mathrm{x}^{2}, \mathrm{y}^{2} ; \nu\right)$ can be attained only if:
$1^{\circ} x^{2}=0$ and $y^{2}=0$,
$2^{\circ} x^{2}=X_{B}(v)$ and $y^{2}=0$,
$3^{\circ} x^{2}=X_{B}(v)$ and $y^{2}=\left(1-e^{-m}\right)^{2}-X_{B}(v)$,
$4^{\circ} \quad x^{2}=\left(1-e^{-m}\right)^{2}-x_{A}(\mu)$ and $y^{2}=x_{A}(\mu)$,
$5^{\circ} x^{2}=0$ and $y^{2}=x_{A}(\mu)$,
with that $0 \leqq v \leqq m$ and $\hat{v}_{A} \leqq \mu \leqq v^{*}$.
d. Let $m \geq \hat{m}$ where \hat{m} is the root of equation (15). Consider now the case when $v=v(\theta)$ is the root of equation (10), whereas $\mu=\mu(\theta)$ - the root of equation (12). In this case, from (17) we have $0 \leq \nu \leq v^{*}$ and $0 \leq \mu \leq \hat{v}_{B}$ where \hat{v}_{B} is the root of equation $\left(13^{\circ}\right)$. From Lemmas A and B we have, respectively,

$$
0 \leq x^{2} \leq x_{A}(v) \quad \text { and } \quad 0 \leq y^{2} \leq x_{B}(\mu)
$$

It can be checked that $X_{A}(v)+X_{B}(\mu) \geq\left(1-e^{-m}\right)^{2}$ when $0 \leq v \leq v^{*}$ and $0 \leq \mu \leq \hat{v}_{B}$. Thus the maximum of $G\left(x^{2}, \mathrm{y}^{2} ; v\right)$ can be attained only if:
$1^{\circ} x^{2}=0$ and $y^{2}=0$,
$2^{\circ} x^{2}=x_{A}(\nu)$ and $y^{2}=0$,
$3^{\circ} \mathrm{x}^{2}=\mathrm{X}_{\mathrm{A}}(v)$ and $\mathrm{y}^{2}=\left(1-\mathrm{e}^{-m}\right)^{2}-\mathrm{X}_{\mathrm{A}}(\nu)$,
$4^{\circ} \quad x^{2}=\left(1-e^{-m}\right)^{2}-x_{B}(\mu)$ and $y^{2}=x_{B}(\mu)$,
$5^{\circ} x^{2}=0$ and $y^{2}=X_{B}(\mu)$,
with that $0 \leq \nu \leq \nu^{*}$ and $0 \leq \mu \leq \hat{v}_{B}$.
It can be seen that, in relation to case (b), only the interval of variability of ν and μ have changed.
e. Let, as before, $m \geqq \hat{m}$. Consider the case when $v=v(\theta)$ is the root of equation (12), whereas $\mu=\mu(\theta)$ - the root of equation (10°). Then from (17) we have $0 \leq v \leq \hat{v}_{B}$ and $0 \leq \mu \leq v^{*}$, and Lemmas B and A imply that

$$
0 \leq x^{2} \leq x_{B}(v) \text { and } 0 \leq y^{2} \leq x_{A}(\mu) \text {. }
$$

Also in this case, $X_{B}(\nu)+x_{A}(\mu) \geq\left(1-e^{-m}\right)^{2}$ when $0 \leq \nu \leq \hat{v}_{B}$ and $0 \leq \mu \leq v^{*}$. Hence the maximum of $G\left(x^{2}, y^{2} ; v\right)$ can be attained only if:
$1^{\circ} x^{2}=0$ and $y^{2}=0$,
$2^{\circ} x^{2}=X_{B}(\nu)$ and $y^{2}=0$,
$3^{\circ} x^{2}=x_{B}(v)$ and $y^{2}=\left(1-e^{-m}\right)^{2}-x_{B}(v)$,
$4^{\circ} \quad x^{2}=\left(1-e^{-m}\right)^{2}-x_{A}(\mu)$ and $y^{2}=x_{A}(\mu)$,
$5^{\circ} \mathrm{x}^{2}=0$ and $\mathrm{y}^{2}=\mathrm{X}_{\mathrm{A}}(\mu)$, with that $0 \leqq \nu \leqq \hat{v}_{B}$ and $0 \leqq \mu \leqq \nu^{*}$.

It is evident that, in relation to case (c), only the intervals of variability of ν and μ have changed.
E. Let $m \geqq \hat{m}$. Finally, consider the case when $\nu=\nu(\theta)$ is the root of equation (12), whereas $\mu=\mu(\theta)$ - the root of equa-
tion (12°). Then from (17) we have $\hat{v}_{B} \leq \nu \leq m$ and $\hat{v}_{B} \leq \mu \leq m$, and from Lemma B it follows that

$$
0 \leq x^{2} \leq x_{B}(v) \text { and } 0 \leq y^{2} \leq X_{B}(\mu)
$$

It can be demonstrated that $X_{B}(\nu)+X_{B}(\mu) \geq\left(1-e^{-m}\right)^{2}$ when $\hat{v}_{B} \leq$ $\leq v \leq m$ and $\hat{v}_{B} \leq \mu \leq m$. So, the maximum of $G\left(x^{2}, y^{2} ; v\right)$ can be attained only if:
$1^{\circ} x^{2}=0$ and $y^{2}=0$,
$2^{\circ} x^{2}=x_{B}(v)$ and $y^{2}=0$,
$3^{\circ} \quad x^{2}=x_{B}(v)$ and $y^{2}=\left(1-e^{-m}\right)^{2}-x_{B}(v)$,
$4^{\circ} \quad x^{2}=\left(1-e^{-m}\right)^{2}-x_{B}(\mu)$ and $y^{2}=x_{B}(\mu)$,
$5^{\circ} \quad x^{2}=0$ and $y^{2}=x_{B}(\mu)$,
with that $\hat{v}_{B} \leq \nu \leq m$ and $\hat{v}_{B} \leq \mu \leq m$.
Summing up cases a-f, we shall next obtain the suitable functions of the variable v, mentioned of earlier, whose maxima can realize the sought-for maximum of the functional $G(F)$.

From cases $\mathrm{a} .1^{\circ}, \mathrm{b} .1^{\circ}$ and $\mathrm{d} .1^{\circ}$ as well as from (11) and $\left(20^{\circ}\right)$ we have, for $m>0$,

$$
G\left(x^{2}, y^{2} ; v\right) \leq A_{1}(v)
$$

where

$$
\begin{equation*}
c A_{1}(v)=\frac{1}{4}\left[4\left(m e^{-2 m}-v e^{-2 v}\right)-\left(1-e^{-2 m}\right)\right]^{2}, \quad 0 \leq v \leq v^{*} \tag{22}
\end{equation*}
$$

From cases c. 1°, e. 1° and $\mathrm{f}. 1^{\circ}$ as well as from (13) and (20°) we obtain, for $m>0$,

$$
G\left(x^{2}, y^{2} ; v\right) \leq{\underset{B}{1}}(v)
$$

where

$$
\begin{equation*}
\&_{1}(v)=\frac{1}{4}\left[2(2 v+1) e^{-2 v}-\left(1+e^{-2 m}\right)\right]^{2}, \quad 0 \leq v \leq m \tag{23}
\end{equation*}
$$

Cases a. 2°, b. 2° and d. 2° as well as (11), (18) and (20) yield, for $m>0$,

$$
G\left(x^{2}, y^{2} ; v\right) \leq c f_{2}(v)
$$

where

$$
\begin{align*}
A_{2}(v) & =m\left(m e^{-2 m}-v e^{-2 v}\right)+\frac{1}{4}\left[(3 m-4)\left(m e^{-2 m}-v e^{-2 v}\right)\right. \tag{24}\\
& \left.+1-e^{-2 m}\right]^{2}, \quad 0 \leq v \leq v^{*}
\end{align*}
$$

Cases c. 2°, e. 2° and $£ .2^{\circ}$ as well as $(13),(19)$ and $\left(20^{\circ}\right)$ give, for $m>0$,

$$
G\left(x^{2}, y^{2} ; v\right) \leq B_{2}(v)
$$

where
(25)

$$
\begin{aligned}
\mathscr{B}_{2}(v) & =\left[(v+1) e^{-v}-e^{-m}\right]^{2}+\frac{1}{4}\left[\left(3 v^{2}+2 v+1\right) e^{-2 v}\right. \\
& \left.-6(v+1) e^{-v} e^{-m}+4 e^{-2 m}+1\right]^{2}, \quad 0 \leq v \leq m
\end{aligned}
$$

From cases a. $3^{\circ}, \mathrm{b} .3^{\circ}$ and $\mathrm{d} .3^{\circ}$ as well as from (11), (18) and $\left(20^{\circ}\right)$ we get, for $m>0$,

$$
G\left(x^{2}, y^{2} ; v\right) \leq A_{3}(v)
$$

where

$$
\begin{align*}
A_{3}(v) & =\left(1-e^{-m}\right)^{2}+\left[(3 m-2)\left(m e^{-2 m}-v e^{-2 v}\right)\right. \tag{26}\\
& \left.-\left(1-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2}, \quad 0 \leq v \leq v^{*}
\end{align*}
$$

From cases c. 3°, e. 3° and $f .3^{\circ}$ as well as from (13), (19) and $\left(20^{\circ}\right)$ we have, for $m>0$,

$$
G\left(X^{2}, Y^{2} ; v\right) \leq \mathcal{B}_{3}(v)
$$

where

$$
\begin{align*}
\mathscr{B}_{3}(v)= & \left(1-e^{-m}\right)^{2}+\left[\left(3 v^{2}+4 v+2\right) e^{-2 v}\right. \tag{27}\\
- & \left.6(v+1) e^{-v} e^{-m}+4 e^{-2 m}-\left(1-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2} \\
& 0 \leq v \leq m
\end{align*}
$$

By taking account of relation (14), it is not difficult to check that:
from cases a. 4°, c. 4° and $e .4^{\circ}$ we shall obtain, for $m>0$,

$$
G\left(x^{2}, Y^{2} ; \mu\right) \leq \mathcal{A}_{3}(\mu), \quad 0 \leq \mu \leq v^{*}
$$

where CA_{3} is defined by formula (26);
cases $b .4^{\circ}$, d. 4° and $f .4^{\circ}$ will yield, for $m>0$,

$$
G\left(x^{2}, y^{2} ; \mu\right) \leq \mathscr{B}_{3}(\mu), \quad 0 \leq \mu \leq m
$$

\mathcal{B}_{3} being defined by (27);
from cases $a .5^{\circ}, \operatorname{c.} 5^{\circ}$ and $e .5^{\circ}$ we shall get, for $m>0$,

$$
G\left(x^{2}, y^{2} ; \mu\right) \leqq c A_{2}(\mu), \quad 0 \leqq \mu \leqq v^{*}
$$

CH_{2} being defined by (24);
cases b. 5°, d. 5° and $\mathrm{f} .5^{\circ}$ will give, for $\mathrm{m}>0$,

$$
\mathrm{G}\left(\mathrm{x}^{2}, \mathrm{y}^{2} ; \mu\right) \leq \mathscr{\Re}_{2}(\mu), \quad 0 \leq \mu \leq \mathrm{m},
$$

with \mathcal{B}_{2} defined by (25).
In consequence, the above considerations imply that, for a fixed m > 0,

$$
G\left(x^{2}, y^{2} ; v\right) \leq \max \left\{A_{k}(v), \mathcal{B}_{k}(v), \quad k=1,2,3\right\}
$$

$$
\text { if } v \in\left\langle 0, v^{*}\right\rangle
$$

whereas

$$
G\left(x^{2}, y^{2} ; v\right) \leq \max \left\{\mathscr{R}_{k}(v), \quad k=1,2,3\right\} \quad \text { if } v \in\left(v^{*}, m>.\right.
$$

4. In this section we shall occupy ourselves with the examination of the functions $\quad A_{k^{\prime}}, \mathbb{E}_{\mathrm{k}^{\prime}} \mathrm{k}=1,2,3$; namely, we shall determine the maxima of the functions $\mathcal{A}_{k}(v), 0 \leq v \leq v^{*}$ and $\mathscr{B}_{k}(v)$, $0 \leq v \leqq m$, for any fixed $m>0$.

In an easy way, from (22) and (23) one obtains, for $m>0$,

$$
c A_{1}(v) \leqq c A_{1}\left(v^{*}\right) \equiv c A^{(1)}(m), \quad v \in\left\langle 0, v^{*}\right\rangle,
$$

$$
\begin{equation*}
\mathscr{B}_{1}(v) \leq \mathscr{B}_{1}(0) \equiv c A^{(1)}(\mathrm{m}), \quad v \in\langle 0, \mathrm{~m}\rangle, \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
C A^{(1)}(m)=\frac{1}{4}\left(1-e^{-2 m}\right)^{2}, \quad m>0 . \tag{29}
\end{equation*}
$$

Examining the function $\mathrm{CA}_{2}(\nu)$ given by (24), for $0 \leqq v \leqq \nu^{*}$, we get (cf. [5])

$$
\begin{array}{lll}
c A_{2}(v) \leqq c A_{2}(0) \equiv c A^{(2)}(m) & \text { when } & 0<m \leqq m_{1}, \\
c A_{2}(v) \leqq c A_{2}\left(v^{*}\right)=c A^{(1)}(m) & \text { when } m_{1}<m \leqq m_{2}^{\prime} \tag{30}\\
c A_{2}(v) \leqq A_{2}(0) \equiv c A^{(2)}(m) & \text { when } m>m_{2},
\end{array}
$$

where $o A^{(1)}(\mathrm{m})$ is given by (29), whereas

$$
\begin{equation*}
c A^{(2)}(m)=m^{2} e^{-2 m}+\frac{1}{4}\left[\left(3 m^{2}-4 m-1\right) e^{-2 m}+1\right]^{2}, \tag{31}
\end{equation*}
$$

and m_{1}, m_{2} are the roots of the equation $c A^{(2)}(m)-o A^{(1)}(m)=0$, $m_{1} \in(0,28 ; 0,3), \quad m_{2} \in(0,5 ; 0,54)$.

The investigation of the function $\mathcal{B}_{2}(v)$ given by formula (25) is very arduous. Proceeding similarly as in paper [5], one can
prove that \mathcal{B}_{2} is a decreasing function of the variable $\nu \in\langle 0, m\rangle$ if $0<m \leq \log 6$; whereas if $m>\log 6$, then $\mathscr{B}_{2}(v)$ has a local maximum at a point ν_{0} where $\nu_{0}, \nu_{0} \in(0, m)$, is the only root of the equation $\mathbb{B}_{2}^{\prime}(\nu)=0$. Consequently,

$$
\begin{array}{ll}
\mathscr{B}_{2}(v) \leq \mathscr{B}_{2}(0) \equiv \mathscr{B}^{(1)}(m) & \text { when } 0<m \leq \log 6, \tag{32}\\
\mathscr{A}_{2}(v) \leq \mathscr{A}_{2}\left(v_{0}\right) & \text { when } m>\log 6,
\end{array}
$$

where

$$
\begin{align*}
\mathcal{B}^{(1)}(m) & =\left(1-e^{-m}\right)^{2}+\left[\left(1-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2}, \tag{33}\\
\mathscr{A}_{2}\left(v_{0}\right) & =\left[\left(v_{0}+1\right) e^{-v_{0}}-e^{-m}\right]^{2} \\
& +\frac{1}{4}\left[\left(3 v_{0}^{2}+2 v_{0}+1\right) e^{-2 v_{0}}\right. \\
& \left.-6\left(v_{0}+1\right) e^{-v_{0}} e^{-m}+4 e^{-2 m}+1\right]^{2},
\end{align*}
$$

while $\nu_{0}, \nu_{0} \in(0, \mathrm{~m})$, is the root of the equation

$$
\begin{align*}
2\left[\left(v_{0}\right.\right. & \left.+1) e^{-v_{0}}-e^{-m}\right]+\left[\left(3 v_{0}-1\right) e^{-v_{0}}-3 e^{-m}\right] \tag{35}\\
& \cdot\left[\left(3 v_{0}^{2}+2 v_{0}+1\right) e^{-2 v_{0}}-6\left(v_{0}+1\right) e^{-v_{0}} e^{-m}\right. \\
& \left.+4 e^{-2 m}+1\right]=0
\end{align*}
$$

In turn, examining the function $c A_{3}(v)$ given by (26), for $0 \leqq v \leqq v^{*}$, we obtain

$$
\begin{array}{ll}
A_{3}(v) \leqq A_{3}\left(v^{*}\right)=B^{(1)}(m) & \text { when } 0<m \leq \frac{2}{3}, \\
c A_{3}(v) \leqq c A_{3}(0) \equiv A^{(3)}(m) & \text { when } \frac{2}{3}<m \leq m_{3}, \\
c A_{3}(v) \leqq c A_{3}\left(v^{*}\right)=B^{(1)}(m) & \text { when } m>m_{3},
\end{array}
$$

where $\mathfrak{B}^{(1)}(m)$ is defined by (33),

$$
\begin{aligned}
c A^{(3)}(m) & =\left(1-e^{-m}\right)^{2}+\left[(3 m-2) m e^{-2 m}\right. \\
& \left.-\left(1-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2}
\end{aligned}
$$

while m_{3} is the root of the equation $c A^{(3)}(m)-\beta^{(1)}(\mathrm{m})=0$, $m_{3} \in(0,7 ; 0,8)$.

To finish with, let us examine the function $\mathcal{B B}_{3}(v)$ given by formula (27), for $0 \leq v \leq m, m>0$. In paper [5], only its partial examination was carried out, namely, with a fixed $m \geqslant \log 3$

We have

$$
\mathscr{B}_{3}^{\prime}(v)=-4 v e^{-v} g(v) h(v)
$$

where

$$
\begin{aligned}
g(v) & =(3 v+1) e^{-v}-3 e^{-m} \\
h(v) & =\left(3 v^{2}+4 v+2\right) e^{-2 v}-6(v+1) e^{-v} e^{-m} \\
& +4 e^{-2 m}-\left(1-e^{-m}\right)\left(1-2 e^{-m}\right), \quad 0 \leq v \leq m .
\end{aligned}
$$

Note that if $0<m \leq \frac{2}{3}$, then $g(v) \leq 0,0 \leq v \leq m$. If $m \geq \log 3$, then $g(v) \geq 0,0 \leq v \leq m$. If $\frac{2}{3}<m<\log 3$, then the function $g(v)$ has exactly one zero $v_{1} \in\left(0, \frac{2}{3}\right)$. Since $h^{-}(v)=-2 v e^{-v} g(v)$, it suffices to examine the values of $h(0)$ and $h(m)$. It can be shown that $h(0) \leq 0$ when $0<m \leq \log 2$ and $h(0)>0$ when $m>\log 2$. Whereas $h(m) \leq 0$ when $0<m \leq m_{4}$ and $m \geq m_{5}$ and $h(m)>0$ when $m_{4}<m<m_{5}$, with m_{4}, m_{5} being the roots of the equation $h(m)=$ $=0, m_{4}<\frac{2}{3}, m_{5} \in(\log 2, \log 3)$. Making use of the form of the derivative of the function $\mathscr{S}_{3}(\nu)$, we shall obtain that:

- if $0<m \leq m_{4}$, then $\mathcal{B}_{3}(v)$ is a decreasing function of the variable v;
- if $m_{4}<m \leqq \frac{2}{3}$, then $\mathscr{B}_{3}(v)$ has a local minimum at the point v_{2} where $h\left(v_{2}\right)=0, v_{2} \in(0, m)$;
- if $\frac{2}{3}<m \leqq \log 2$, then $\mathscr{B}_{3}(v)$ has a local minimum at the point $v_{2}, h\left(v_{2}\right)=0$, and $\mathcal{B}_{3}(v)$ has a local maximum at the point v_{1} where $g\left(v_{1}\right)=0, v_{2}<v_{1}$;
- if $\log 2<m \leqq m_{5}$, then $\mathcal{B}_{3}(\nu)$ has a local maximum at the point $v_{1}, g\left(v_{1}\right)=0$;
- if $m_{5}<m<\log 3$, then $\mathcal{B}_{3}(v)$ has a local maximum at the point $v_{1}, g\left(\nu_{1}\right)=0$, and $\mathscr{B}_{3}(v)$ has a local minimum at the point v_{2} where $h\left(v_{2}\right)=0, v_{1}<v_{2}$;
- if $m \geq \log 3$, then $\mathscr{B}_{3}(v)$ has a local minimum at the point v_{2} where $h\left(v_{2}\right)=0$.

Hence and from the examination of the values of the function $\mathscr{F}_{3}(v)$ at the points $v=0$ and $v=m$ we shall finally get

$$
\begin{array}{ll}
\mathscr{B}_{3}(v) \leq \mathscr{H}_{3}(0)=\mathscr{A}^{(1)}(m) & \text { when } 0<m \leq \frac{2}{3}, \\
\mathscr{B}_{3}(v) \leq \mathscr{A}_{3}\left(v_{1}\right) & \text { when } \frac{2}{3}<m<\log 3, \tag{37}\\
\mathcal{B}_{3}(v) \leq \mathcal{B}_{3}(0)=\mathscr{A}^{(1)}(m) & \text { when } m \geq \log 3,
\end{array}
$$

where $\mathcal{B}^{(1)}(\mathrm{m})$ is given by formula (33), while

$$
\begin{aligned}
\mathcal{B}_{3}\left(\nu_{1}\right) & =\left(1-e^{-m}\right)^{2}+\left[\left(3 v_{1}^{2}+4 \nu_{1}+2\right) e^{-2 v_{1}}\right. \\
& -6\left(v_{1}+1\right) e^{-v_{1}} e^{-m}+4 e^{-2 m} \\
& \left.-\left(1-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2}
\end{aligned}
$$

v_{1} being the only root of the equation $g(v)=0$, i.e.

$$
\left(3 v_{1}+1\right) e^{-v_{1}}-3 e^{-m}=0, \quad v_{1} \in\left(0, \frac{2}{3}\right)
$$

We have thus determined the maxima of the functions A_{k}, \mathscr{B}_{k}, $k=1,2,3$, for all values of $m>0$.
5. We shall next carry out a comparison of the estimates of the functions ${ }^{C} A_{k}, \mathscr{B}_{k}$ obtained, for suitable values of m. Before we proceed to this, let us observe that the functions $A_{3}(v)$ and $\mathscr{B}_{3}(\nu)$ given by formulae (26) and (27), respectively, have been obtained in the case when $x^{2}+y^{2}=\left(1-e^{-m}\right)^{2}, m>0$ (compare a-f in section 3). It is known from the estimate of the coefficient $A_{2}=-2(x+i y)$ in the class $S(M), \log M=m$, that this equality is possible only for the Pick function $w=P(z, M) \equiv$ $\equiv P_{\varepsilon}\left(z, e^{m}\right)$ given by equation (5). The coefficients A_{2}, A_{3} of this function are defined by the formulae

$$
\begin{aligned}
& A_{2}=2 \varepsilon\left(e^{-m}-1\right) \\
& A_{3}=\varepsilon^{2}\left(e^{-m}-1\right)\left(5 e^{-m}-3\right), \quad|\varepsilon|=1, \quad m=\log M
\end{aligned}
$$

Putting $F=P_{\varepsilon}\left(z, e^{m}\right)$, from (7) we shall get

$$
\begin{aligned}
G\left(P_{\varepsilon}\left(z, e^{m}\right)\right) & =\left(1-e^{-m}\right)^{2} \\
& +\left[\left(1-e^{-m}\right)\left(1-2 e^{-m}\right) \cos 2 \phi\right]^{2}, \\
& \varepsilon=e^{i \phi}, \quad 0 \leqslant \phi \leqslant 2 \pi .
\end{aligned}
$$

It is easily verified that

$$
\begin{align*}
G\left(P_{\varepsilon}\left(z, e^{m}\right)\right) & \leq \max _{|\varepsilon|=1} G\left(P_{\varepsilon}\left(z, e^{m}\right)\right)=\left(1-e^{-m}\right)^{2} \tag{38}\\
& +\left[\left(1-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2},
\end{align*}
$$

the last equality holding for $\phi=1 \frac{\pi}{2}, 1=0,1,2,3$.
On the other hand, as we have mentioned above, for any $v \in$ $\in\left\langle 0, v^{*}\right\rangle$ and $\left.m\right\rangle 0$, there should exist an $\varepsilon_{1},\left|\varepsilon_{1}\right|=1$, such that $A_{3}(v)=G\left(P_{\varepsilon_{1}}\left(z, e^{m}\right)\right)$. Thus (38) implies that we may take into consideration only those v and m for which

$$
\begin{align*}
A_{3}(v) & \leq \max _{\left|\varepsilon_{1}\right|=1} G\left(P_{\varepsilon_{1}}\left(z, e^{m}\right)\right)=\left(1-e^{-m}\right)^{2} \tag{39}\\
& +\left[\left(1-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2}
\end{align*}
$$

In consequence, in the case $\frac{2}{3}<m \leqq m_{3}$, estimate (36) contradicts (39) because it can be checked that $A^{(3)}(m) \geq\left(1-e^{-m}\right)^{2}+$ $+\left[\left(1-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2}$ for $\frac{2}{3}<m \leq m_{3}$. Since $A^{(1)}(m)=$ $=\left(1-e^{-m}\right)^{2}+\left[\left(1-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2}$, therefore, of course, the remaining two estimates in (36) satisfy condition (39).

Analogously, for any $v \in\langle 0, m\rangle$ and $m>0$, there should exist an $\varepsilon_{2}, \quad\left|\varepsilon_{2}\right|=1$, such that $\mathscr{B}^{(3)}(v)=G\left(P_{\varepsilon_{2}}\left(z, e^{m}\right)\right)$. Consequently, (38) implies that we may take into account only those v and m for which

$$
\begin{align*}
\mathcal{B}_{3}(v) & \leqslant \max _{\left|\varepsilon_{2}\right|=1} G\left(P_{\varepsilon_{2}}\left(z, e^{m}\right)\right)=\left(1-e^{-m}\right)^{2} \tag{40}\\
& +\left[\left(1-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2} .
\end{align*}
$$

If $\frac{2}{3}<m<\log 3$, then from the examination of the function $\mathcal{B}_{3}(v)$ it follows that, in (37), also $\mathcal{B}_{3}\left(v_{1}\right)>\left(1-e^{-m}\right)^{2}+[(1-$ $\left.\left.-e^{-m}\right)\left(1-2 e^{-m}\right)\right]^{2}$, which, in virtue of (40), is impossible. The
remaining two estimates in (37) evidently satisfy condition (40).

The above remarks do not concern, of course, the remaining functions, i.e. $A_{1}(v), C A_{2}(v), \mathscr{B}_{1}(v), \mathscr{B}_{2}(v)$, given by formulae (22), (24), (23), (25), respectively (cf. a-f). So, taking account of estimates (28), (30) and (32) obtained for them and of the above conclusions concerning estimates (36) and (37), we shall get that, for any function $F \in S(M), M=e^{m}$,

$$
G(F) \leq \max \left\{A^{(1)}(\mathrm{m}), C A^{(2)}(\mathrm{m}), \theta^{(1)}(\mathrm{m})\right\}
$$

when $m \in\left(0, m_{1}>\cup\left(m_{2}, \log 6>\right.\right.$,

$$
G(F) \leqq \max \left\{c 4^{(1)}(m), \&^{(1)}(m)\right\}
$$

when $m \in\left(m_{1}, m_{2}\right)$,

$$
G(F) \leq \max \left\{C A^{(1)}(\mathrm{m}), C A^{(2)}(\mathrm{m}), \mathcal{B}^{(1)}(\mathrm{m}), \mathcal{B}_{2}\left(\nu_{0}\right)\right\}
$$

when $m \in(\log 6,+\infty)$.
Let us first notice that, for each $m>0$, the inequalities

$$
A^{(1)}(m) \leqslant A^{(2)}(m)<刃^{(1)}(m)
$$

hold. Whereas from the examination of the function $\mathbb{R}_{2}(\nu)$ defined by (25), carried out in section 4, it follows that

$$
\mathbb{B}^{(1)}(m)<\mathscr{B}_{2}\left(\nu_{0}\right) \text { when } m>\log 6 .
$$

So, we have finally obtained that, for each function $F \in S(M)$, $M=e^{m}>1$, the following estimate of functional (7) takes place:

$$
G(F) \leqq\left\{\begin{array}{lll}
B^{(1)}(m) & \text { when } & 0<m \leqq \log 6, \tag{41}\\
B_{2}\left(\nu_{0}\right) & \text { when } & m>\log 6,
\end{array}\right.
$$

where $\mathscr{B}^{(1)}(\mathrm{m}), \mathscr{B}_{2}\left(\nu_{0}\right)$ are defined by formulae (33), (34), respectively, with v_{0} being the only root of equation (35).

It still remains to prove that estimate (41) we have obtained is sharp for each $m>0$. If $m \in(0, \log 6>$, the equality in (41) takes place for the Pick function defined by equation (5) for $\varepsilon= \pm 1, \varepsilon= \pm i, m=\log M$.

In order to show that, also for $m>\log 6$, estimate (41) in the class $S(M)$ is sharp, it is enough to prove, in view of c. 2°,
e. 2°, f. 2° from section 3 and on account of Lemma B, that there exists a function $\theta_{\star}(\tau), 0 \leq \tau \leq m$, for which $y^{2}=0$, i.e.

$$
\begin{equation*}
\int_{0}^{m} e^{-\tau} \sin \theta_{\star}(\tau) d \tau=0 \tag{42}
\end{equation*}
$$

and $\quad\left|\lambda_{1}(\tau)\right|=\mu(\tau)$.
Let $\nu_{0}, \nu_{0} \in(0, m)$, be a solution of equation (35), whereas $\theta_{\star}(\tau)$ a function defined by the formulae

$$
\cos \theta_{*}(\tau)= \begin{cases}e^{\tau-v_{0}} & \text { for } 0 \leq \tau \leq \nu_{0} \\ 1 & \text { for } \nu_{0} \leq \tau \leq m\end{cases}
$$

$$
\sin \theta_{*}(\tau)= \begin{cases} \pm \sqrt{1-e^{2\left(\tau-v_{0}\right)}} & \text { for } 0 \leq \tau \leq v_{0}^{\prime} \\ 0 & \text { for } v_{0} \leq \tau \leq m,\end{cases}
$$

whence one can easily obtain the formulae for the function $k_{*}(\tau)=$ $=e^{i \theta_{\star}(\tau)}$ and, in consequence, determine the respective solution $F_{*} \in S(M)$ of the Löwner equation. of course, $\lambda_{\star}(\tau)=$ $=e^{-\tau} \cos \theta_{\star}(\tau)=x(\tau)$.

By choosing different signs in portions of the interval $<0, \nu_{0}>$, one can make condition (42) be satisfied. Indeed, let us consider, for instance, the function

$$
\begin{aligned}
& \phi(x)={\underset{o}{\mathcal{S}}}_{x} e^{-\tau \sqrt{1-e^{2\left(\tau-\nu_{0}\right)}}} d \tau-{\underset{x}{x}}_{\nu_{0}} e^{-\tau \sqrt{1-e^{2\left(\tau-\nu_{0}\right)}}} d \tau, \\
& x \in\left\langle 0, \nu_{0}\right\rangle
\end{aligned}
$$

It is continuous in the interval $\left.\left\langle 0, \nu_{0}\right\rangle, \phi(0)<0, \phi\left(\nu_{0}\right)\right\rangle 0$, thus there exists a point $x_{0} \in\left(0, \nu_{0}\right)$ such that $\phi\left(x_{0}\right)=0$. Putting then

$$
\sin \theta_{\star}(\tau)= \begin{cases}\sqrt{1-e^{2\left(\tau-\nu_{0}\right)}} & \text { for } 0 \leq \tau \leq x_{0}^{\prime} \\ -\sqrt{1-e^{2\left(\tau-v_{0}\right)}} & \text { for } x_{0} \leq \tau \leq v_{0}^{\prime} \\ 0 & \text { for } \nu_{0} \leq \tau \leq m,\end{cases}
$$

we finally obtain condition (42).

We have thus shown that, for each $M>1$, there exist functions of the classes $S(M)$ realizing the equality of estimate (41), with that $m=\log M$. Thereby, (41), (7) and (3) imply the following

THEOREM. If H is any function of form (1) from the class $S^{(2)}(\sqrt{M})$, then the following estimates hold:

$$
\left|C_{3}\right|^{2}+\left|C_{5}\right|^{2} \leq\left\{\begin{array}{l}
\left(1-\frac{1}{M}\right)^{2}+\left[\left(1-\frac{1}{M}\right)\left(1-\frac{2}{M}\right)\right]^{2} \tag{43}\\
\text { when } 1<M \leq 6, \\
{\left[\left(v_{0}+1\right) e^{-v_{0}}-\frac{1}{M}\right]^{2}+\frac{1}{4}\left[\left(3 v_{0}^{2}+2 v_{0}+1\right) e^{-2 v_{0}}\right.} \\
\left.-\frac{6}{M}\left(v_{0}+1\right) e^{-v_{0}}+\frac{4}{M^{2}}+1\right]^{2} \\
\text { when } M>6,
\end{array}\right.
$$

where $\nu_{0} \in(0, \log M)$ is the root of the equation

$$
\begin{aligned}
& 2\left[(v+1) e^{-v}-\frac{1}{M}\right]+\left[(3 v-1) e^{-v}-\frac{3}{M}\right]\left[\left(3 v^{2}+2 v+1\right) e^{-2 v}\right. \\
& \\
& \left.-\frac{6}{M}(v+1) e^{-v}+\frac{4}{M^{2}}+1\right]=0
\end{aligned}
$$

For each $M>1$, there exist functions of the class $S^{(2)}(\sqrt{M})$ for which the equality sign in (43) takes place.

REMARK. It can be shown that if $M \rightarrow \infty$, then the root ν_{0} of equation (35), tends to zero. Consequently, from (43) it follows that, for each function $H \in S^{(2)}$ ([4]),

$$
\left|c_{3}\right|^{2}+\left|c_{5}\right|^{2} \leq 2
$$

REFERENCES

[1] Jakubowski Z. J., Sur les coefficients des fonctions univalentes dans le cercle unité, Annales Polonici Mathematici, 19 (1967), 207-233.
[1'] Jakubowski Z. J., Le maximum d'une fonctionnelle dans la famille des fonctions univalentes bornées, Colloquium Mathematicum, 7(1), (1959), 127-128.
[2] Lö w n e r K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, Math. Ann., 89 (1923), 103-121.
[3] Pick G., Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet, Sitzungsber. Akad. Wiss. Wien. Abt. IIa, (1917), 247-263.
[4] R o bertson M. S., A remark on the odd schlicht functions, Bull. Amer. Math. Soc., 42 (1936), 366-370.
[5] Z y skowska K., On an estimate of Robertson's functional in the class of odd bounded univalent functions, Commentationes Mathematicae, XXIX (1990), 341-352.

Chair of Special Functions University of Łódź

Krystyna Zyskowska

O OSZACOWANIU PEWNEGO FUNKCJONALU

W KLASIE OGRANICZONYCH NIEPARZYSTYCH FUNKCJI JEDNOLISTNYCH

Oznaczmy przez $S(M), \quad M>1$, rodzinę funkcji jednolistnych, holomorficznych w kole $E=\{z:|z|<1\}$ postaci

$$
F(z)=z+A_{2} z^{2}+\ldots+A_{n} z^{n}+\ldots
$$

spełniających w kole E warunek $|F(z)|<M, M>1$. $\operatorname{Przez} S^{(2)}(\sqrt{M})$ oznaczmy klase funkcji jednolistnych, nieparzystych, postaci

$$
H(z)=z+C_{3} z^{3}+C_{5} z^{5}+\ldots+C_{2 n+1} z^{2 n+1}+\ldots
$$

spełniających w kole E warunek $|H(z)|<\sqrt{M}, M>1$.
Oczywiście, dla każdej funkcji $F \in S(M)$ funkcja $H(z)=\sqrt{F\left(z^{2}\right)}$ należy do $S^{(2)}(\sqrt{M})$ i na odwrót.

W pracy dowodzi się, że ma miejsce następujące
Twierdzenie. Jeżeli H jest dowolną funkcją klasy $S^{(2)}(\sqrt{M})$, to zachodzą następujace oszacowania

$$
\left|C_{3}\right|^{2}+\left|C_{5}\right|^{2} \leqq\left\{\begin{array}{l}
\left(1-\frac{1}{M}\right)^{2}+\left[\left(1-\frac{1}{M}\right)\left(1-\frac{2}{M}\right)\right]^{2}, \\
\quad \text { gdy } 1<M \leqq 6 \\
{\left[\left(\nu_{0}+1\right) e^{-v_{0}}-\frac{1}{M}\right]^{2}+\frac{1}{4}\left[\left(3 v_{0}^{2}+2 v_{0}+1\right) e^{-2 \nu_{0}}-\right.} \\
\left.-\frac{6}{M}\left(\nu_{0}+1\right) e^{-\nu_{0}}+\frac{4}{M^{2}}+1\right]^{2}, \quad \text { gdy } M>6
\end{array}\right.
$$

gdzie $\nu_{0} \in(0, \log M)$ jest pierwiastkiem równania

$$
\begin{gathered}
2\left[(v+1) e^{-v}-\frac{1}{M}\right]+\left[(3 v-1) e^{-v}-\frac{3}{M}\right]\left[\left(3 v^{2}+2 v+1\right) e^{-2 v}-\right. \\
\left.-\frac{6}{M}(v+1) e^{-v}+\frac{4}{M^{2}}+1\right]=0
\end{gathered}
$$

Dla każdego $M>1$ istnieją funkcje klasy $S^{(2)}(\sqrt{M})$, dla których ma miejsce znak równości w powyższym oszacowaniu.

