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ON PSEUDO-EBLUP UNDER SOME MODEL  

FOR LONGITUDINAL DATA WITH AUXILIARY 

VARIABLES  
 

Abstract. The problem of modeling longitudinal profiles is considered assuming that the 

population and elements affiliation to subpopulations may change in time. The considerations are 

based on a model with auxiliary variables for longitudinal data with element and subpopulation 

specific random components (compare Verbeke, Molenberghs, 2000; Hedeker, Gibbons, 2006) 

which is a special case of the General Linear Model (GLM) the General Linear Mixed Model 

(GLMM). In the paper the pseudo-empirical best linear unbiased predictor (Pseudo-EBLUP) based 

on model-assisted approach will be presented along with its mean squared error (MSE) and its 

estimators. In the simulation study its accuracy will be compared with some calibration estimators 

which are based on model-assisted approach too. 

Key words: small area estimation, pseudo-empirical best linear unbiased predictors, 

longitudinal data  

 

I. INTRODUCTION 

  

In the paper longitudinal data for periods t=1,...,M are considered. In the 

period t the population of size tN  is denoted by t . The population in the 

period t is divided into D disjoint domains (subpopulations) dt  of size dtN , 

where d=1,...,D. Let the set of population elements for which observations are 

available in the period t be denoted by st and its size by nt. The set of domain 

elements for which observations are available in the period t is denoted by dts  

and its size by ndt.  

We assume that the population may change in time and that one population 

element may change its domain affiliation in time (from technical point of view 

observations of some population element which change its domain affiliation are 

treated as observations of new population element). It means that i and  

t completely identify domain affiliation but additional subscript d will be needed 

as well. Let idM  denote the number of periods when the i-th population element 
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belongs to the d-th domain. Let us denote the number of periods when the i-th 

population element (which belongs to the d-th domain) is observed by idm .  

Values of the variable of interest are realizations of random variables 
idjY  

for the i-th population element which belongs to the d-th domain in the period 

ijt , where i=1,...,N, j=1,...,Mid, d=1,...,D. The vector of size 1idM
 
of random 

variables 
idjY  for the i-th population element from the d-th domain will be 

denoted by idjYidY , where 1,..., idj M .  

We consider two-stage superpopulation model used for longitudinal data 

(compare Verbeke, Molenberghs (2000); Hedeker, Gibbons (2006)). Firstly: 

 

 id id id id
Y Z e , (1) 

 

where i=1,...,N; d=1,...,D, 
id

Z  is known matrix of size idM q , 
id

 is a vector 

of unknown parameters of size 1q , 
id

e  is a random component vector of size 

1idM . Vectors 
id

e  (i=1,...,N; d=1,...,D) are independent with 0 vector 

of expected values and variance-covariance matrix 
id

R . Although 
id

R  may 

depend on i it is often assumed that 
2

e
id

id M
R I  where 

idM
I is the identity 

matrix of rank idM . Secondly, we assume that: 

 

 id id id
K v , (2) 

 

where i=1,...,N; d=1,...,D, idK  is known matrix of size q p ,  is a vector of 

unknown parameters of size 1p , idv  is a vector of random components of 

size 1q . It is assumed that vectors
 idv  (i=1,...,N; d=1,...,D) are independent 

with 0 vector of expected values and variance-covariance matrix idG H
 
what 

means that idG
 
does not depend on i. 

Similar assumptions to (1) and (2) are presented by Verbeke, Molenberghs 

(2000) p. 20 but there are 3 differences. Firstly, in the book assumptions are 

made for profiles defined by elements. In this paper assumptions are made for 

profiles defined by elements and domain affiliation i.e. idY  (of size 1idM ). 

Secondly, in the book the assumptions are made only for the sampled elements. 

In this paper they are made for all of population elements. Thirdly, Verbeke and 
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Molenberghs (2000) (unlike in this paper) in their notations do not take the 

possibility of population changes in time into account. 

Based on (1) and (2) it is obtained that: 

 

 id id id id id
Y X Z v e , (3) 

 

where i=1,...,N; d=1,...,D, id id idX Z K is known matrix of size idM p .  

Let us consider two special cases of the model (3). The model which will be 

called special case 1 is a random regression coefficient model similar to the one 

proposed by Depmster, Rubin and Tsutakawa (1981) and studied later e.g. by 

Prasad and Rao (1990) or Moura and Holt (1999)  (but they do not consider 

longitudinal model, and they consider domain specific v random component). 

We assume that: 

 

 
( )idj d id ij idj d ij id ij idjY v x e x v x e  (4) 

 

where i=1,...,N; d=1,...,D, j=1,...,Mid. In the considered model we assume that 

(compare Verbeke and Molenberghs, 2000) 
2

e
i

id M
R I . What is more, 

2

vH . Hence, 

 

 

2 2 2

' ' '

2

' '

0 for ' '

( , ) for ' '

for ' ' '

idj i d j e ij v

ij i j v

i i d d

Cov Y Y x i i j j

x x i i d d j j
 

     (5) 

 

The second model, which will be called special case 2, is nested error 

regression model similar to the one proposed by Battese, Harter and Fuller 

(1988) (but they do not consider longitudinal model, and they consider domain 

specific v random component): 

 

 idj d id idjY v e
idj

x  (6) 

 

where 1 2
...

idj idj idjp
x x x

idj
x  

In the considered model we assume that 
2

e
i

id M
R I . What is more, 

2

vH . Hence, ' ' '( , )idj i d jCov Y Y  is given by (5) where 1i j ijx .  
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We have assumed that the population may change in time and that one 

population element may change its domain affiliation in time. Observations of 

new element of the population or observations of the population element after 

the change of the domain affiliation are treated as realizations of new profile (3). 

Hence, because of covariance structure where nonzero covariances are only 

within profiles, we assume independence of observations for some population 

element before and after changing domain affiliation. 

 

II. PSEUDO-EBLUP UNDER SPECIAL CASE 1 

  

Prasad and Rao (1999) propose to use EBLUP based on aggregated version 

(inclusion probabilities are included) of the unit level model and call the 

resulting predictor Pseudo-EBLUP. Another pseudo-EBLUP is presented by 

You and Rao (2002). These predictors in the case of survey conducted in one 

period are studied by Bleuer, Godbout and Morin (2007). In the above 

mentioned papers Psudo-EBLUP is used for data from single period.  

Let us consider longitudinal survey. Let 
ij  

be inclusion probability of the i-

th population element (which belongs to the d-th domain) in the period j. Hence, 

the Horvitz-Thompson estimator of the d-th domain mean in the period j is given by: 

 

 

1

1ˆ
dj dj dj

idj

dj ij idji s i s i s
ij ij

Y
w Y , (7)  

 

where 

1

1 1
.

dj
ij i s

ij ij

w  Then, we transform type B model (unit level 

model) (4), into type A model (area level model):  

 

 dj dj
ij idj ij d ij id ij idji s i s

w Y w x v x e , (8) 

and hence 

 
ˆ ˆ
dj d dj dj djx v e , (9) 

 

where ˆ
dj

dj ij iji s
x w x , 

dj
dj ij ij idi s

v w x v  and 
dj

dj ij idji s
e w e , 

dje
 
are 

independent random components with variances 2 2

dj
e iji s

w   and vectors 

1
... ...

d

T

d dj dm
v v v

d
v  (where d=1,...,D and dm  is number of periods  
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when at least one element of the d-th domain is observed) are independent 

random vectors with zero vector of expected values and variance-covariance 

matrix (under aggregated model (9)) 2 2( ) vD
d d d

v G G , where  

 

1 1 1

1 1

1

2 2

1 1 1 1 1 1

2 2

1 1

1 1

... ...

... ... ... ... ...

... ...

... ... ... ... ...

...

d dd d dj d dj

d dd dj dj d dj

d d dd dj

i i i ij i ij i iim imi s i s s i s s

ij i ij i ij ij ij ijim imi s s i s i s s

i i ijim im imi s s

w x w w x x w w x x

w w x x w x w w x x

w w x x w w x

d
G

1

2 2
...

d d dd dj d d
ijim im imi s s i s m

x w x

 
 (10) 

 

Hence (based on Henderson’s theorem, 1950), BLUP of domain total for 

aggregated model (4) called pseudo-BLUP is given by: 

 

 

2 1

* * * * * * * * ( )
ˆ ˆ ˆˆˆ ˆ(

Pseudo BLUP

d j d j d j d v d j aggr dN x dss d dg V x ) , (11) 

 

where 
2 2 2

( ) 1 d dj
aggr e ij vj m i s

diag wdss dV G , 
* *d jg  is j*-th row of *d

G  

matrix, 

 

 
1

ˆ ˆ ˆˆ ... ...
d

T

d dj dmd
,

1
ˆ ˆ ˆ ˆ... ...

d

T

d dj dm
x x x

d
x ,  

 

 1 1 1

( ) ( )
ˆ ˆˆ ˆ ˆ( )

T T

d aggr aggrd dss d d dss dx V x x V ,  

 

Hence, the MSE of Pseudo-BLUP is given by 

 

 1 2
ˆ ˆ( ) ( ') ( ) ( )

s s s s

BLU BLUMSE Var g g  (12) 

 

where 

 * *

2 2 2 2 4 1

1 * * * * * * ( ) * * *( )
d j

s T

d j v ij ij v d j aggr d ji s
g N w x d ssg V g , (13) 

 

 
2

2 2 1 1 1

2 * * * * * * ( ) ( )
ˆ ˆ ˆ ˆ( ) ( )

s T

d j d j v d j aggr aggrg N x dss d d dss dg V x x V x , (14) 
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If the unknown parameters in (11) are replaced by their estimates predictor 

called Pseudo-EBLUP is obtained. Its MSE (using theorem of Datta and Lahiri 

(2000)) is given by:  

 

  
* 1

1 2 3
ˆ ˆ( ( )) ( ) ( ) ( ) ( )

S s s s

EBLUMSE g g g o D  (15) 

 

where 1 ( )sg  and 2 ( )sg
 
are given by (13) and (14) respectively and 

 

  

* 2 ( 1) ( 1) ( 1)

3 * *( ) 2s

d j ee vv ev ve vv eeg N q I q I q I  (16) 

where  

4 1 2 1 2 1

* * ( ) ( ) ( ) * *1 1d ddj dj

T

ee v d j aggr ij aggr ij aggr d jj m j mi s i s
q diag w diag wdss dss dssg V V V g

 (17) 

 

  

2 1 1 2 1

* * ( ) ( ) ( ) * *( ) ( )T T

vv d j v aggr aggr v aggr d jq
d d

dss d dss dss dm m
g I V G V I V G g

 
(18) 

 

2 1 2 1 2 1

* * ( ) ( ) ( ) * *1
( )

d dj

T T

ev v d j aggr ij aggr v aggr d jj m i s
q diag w

d
dss dss dss dm

g V V I V G g
  

 
  (19) 

  
( 1) ( 1)

1

( 1) ( 1)

vv ve

ve ee

I I

I I
I  (20) 

 
2

( 1) 1 2 2

1 1 1

2
d idn mD

vv id ij

d i j

I b b x , ( 1) 1 2 2

1 1 1

2
d idn mD

ve id ij

d i j

I b b x ,  

 

( 1) 1 4 2

1 1

2 ( 1)
dnD

ee id e id

d i

I b m b , 
2 2 2

1

idm

id e v ij

j

b x , 

 
22

4 2 2 2 2 2

1 1 1 1 1 1 1 1

( 1)
d d id d idn n m n mD D D

id e id id ij id ij

d i d i j d i j

b m b b x b x    

 

The MSE estimator of the pseudo-EBLUP when unknown parameters are 

replaced by its Restricted Maximum Likelihood (REML) estimates is given by 
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 1
ˆ1 2 3

ˆ( )ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( ) ( )
s

S s s s T

EBLU

g
MSE g g g B ,  (21) 

 

where vector of biases ˆ ( )T
B

 
for REML estimators assuming normality is given by:  

 

 
1

ˆ ( ) ( )REML o DB , (22) 

 

and hence the last element in (21) is omitted, 
1 2 3

ˆ ˆ ˆ( ), ( ), ( )s s sg g g
 
are given by 

(13), (14), (16) respectively, where vector of unknown parameters is replaced 

by estimator ˆ .  

The MSE estimator of the pseudo-EBLUP when unknown parameters are 

replaced by their Maximum Likelihood (ML) estimates is given by (21), where 

1 2 3
ˆ ˆ ˆ( ), ( ), ( )s s sg g g are given by (13), (14), (16) respectively, where vector of 

unknown parameters  is replaced by estimator ˆ,  elements of 1 ( )sg
 are 

given by: 

 

2 4 2 21
* * * * ( ) * * ( ) * * *2 1

( )

d dj

s
T

d j v d j aggr ij ij aggr d jj m i s
e

g
N diag w x-1 -1

d ss d ssg V V g  

* *

2 2 2 2 41
* * * * * ( ) * * * * * ( ) * * ( ) * * *2

( )
2

d j

s
T T

d j ij ij v d j aggr d j v d j aggr aggr d ji s
v

g
N w x -1 -1 -1

d ss d ss d d ss
g V g g V G V g

 

where the vector of bias of ML estimators is given by 

 

 
1 1 1

ˆ 1

1
( ) ( ) ( ) ( ) ( )

2
ML k D

k

col tr o DB I I I  (23) 

 

where 
1

I  is given by (20) and 

 

1

1 ( ) ( )k q

k

col tr I I

1 1 2

1 2 2 2 1 2 2 2

1 1 1 1 1 1 1 1 1 1

d id d id d id d id

T

n m n m n m n mD D

id ij id ij id ij id ij

d i j i j d i j i j

b x b x b x b x  
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III. PSEUDO-EBLUP UNDER SPECIAL CASE 2 

 

Based on Henderson’s theorem (1950), the BLUP of the domain total for 

aggregated version of model (6) called the pseudo-BLUP is given by: 

 

 
2 1

* * * * * * ( )

ˆˆ ˆ ˆ ˆˆ (
Pseudo BLUP

d j d j v d j aggrN d*j* d dss d d dx g V X )  (24) 

where 
2 2 2

( ) 1
,

d dj
aggr e ij vj m i s

diag wdss dV G  
* *d jg  is j*-th row of *d

G  

matrix given in this case by (10), where , 1i j ijx , 
1

ˆ ˆ ˆˆ ... ... ,
d

T

d dj dmd
 

ˆ ˆ ˆ ˆ
T

T T T

d
d d1 dj dm

X x ... x ... x  and 
1 1 1ˆ ˆ ˆˆ ˆ( )

T T

d d dss d d dss d
X V X X V   

For aggregated version of model (6), equations (12), (15), (21), (23) are still 

valid, but: 

  

  * *

2 2 2 4 1

1 * * * * * ( ) * * *( )
d j

s T

d j v ij v d j aggr d ji s
g N w d ssg V g , (25) 

 

  

2
2 2 1 1 1

2 * * * * ( )

ˆ ˆ ˆˆ( ) ( )s T

d j v d j aggrg N dj dss d d dss dx g V X X V X , (26) 

 

 

* 2 ( 1) ( 1) ( 1)

3 * *( ) 2
s

d j ee vv ev ve vv eeg N q I q I q I  (27)  

 

where , ,ee ev vvq q q  are given by (17), (18), (19) but where 
d

G is given by  (10), 

where , 1i j ijx , and ( 1) 1 2 2

1 1

2
dnD

vv id id

d i

I b b m , ( 1) 1 2

1 1

2
dnD

ve id id

d i

I b b m , 

( 1) 1 4 2

1 1

2 ( 1)
dnD

ee id e id

d i

I b m b , 
2 2

id e v idb m ,  

2

4 2 2 2 2

1 1 1 1 1 1

( 1)
d d dn n nD D D

id e id id id id id

d i d i d i

b m b b m b m  

 

What is more, 

 

2 4 21
* * * * ( ) * ( ) * * *2 1

( )

d dj

s
T

d j v d j aggr ij aggr d jj m i s
e

g
N diag w-1 -1

d ss d ss
g V V g
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* *

2 2 2 41
* * * * ( ) * * * * * ( ) * * ( ) * * *2

( )
2

d j

s
T T

d j ij v d j aggr d j v d j aggr aggr d ji s
v

g
N w -1 -1 -1

d ss d ss d d ss
g V g g V G V g

 

1

1 ( ) ( )k q

k

col tr I I  

1 1

1 2 1 2

1 1 1 1 1 1

d d d d

T

n n n nD D

id id id id id

d i i d i i

tr b b tr b m bT T T T

sid sid sid sid sid sid sid sidX X X X X X X X

where sidX  is idm p  matrix of auxiliary variables. 

 

IV. SIMULATION ANALYSES 

 

The Monte Carlo simulation analyses are based on real data on N=314 

Polish poviats (excluding cites with poviat’s rights), what is NTS 4 level, for 

M=4 years 2005-2008 (from www.stat.gov.pl). The problem is to estimate 

subpopulations (domains) totals for D=6 regions (NTS 1 level) in 2008. The 

variable of interest is poviats’ own incomes (in PLN) and the auxiliary variable 

is the population size in poviats (in persons). Two simulations are conducted 

using R (R Development Core Team, 2010).  In the simulations accuracy of the 

Pseudo-EBLUP will be compared with accuracy of two calibration estimators 

(Rao (2003) pp. 17-18) which will be denoted by GREG1 and GREG2 . Both 

calibration estimators are of the form 
* *

* * * *
ˆ

d j

GREG

d j sij ij

i s

t w y , but weights *sijw  are 

solutions for GREG1 of * *

* * * *

2

*

*

min
d j

d j d j

sij i

i s i i

sij

i s i

w d

d q

w i ix x

 and for GREG2 of  

*

* *

2
(2)

*

(2)

*

min
j

j j

sij i

i s i i

sij

i s i

w d

d q

w i ix x

.  

The first simulation is design-based. In this case sample of size n=79 

elements (c.a. 25% of population size) is balanced panel sample, which is drawn 

at random in the first period with inclusion probabilities proportional to the 
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value of the auxiliary variable in this period. For this sample size it was possible 

to estimate all of domain totals in each iteration even using direct estimators. 

The number of samples drawn in the simulation equals 10 000. 

The second simulation is model based. In this case one sample is drawn 

using sample design described above what gives the division if the population on 

the sampled and unsampled part. Than 10 000 populations are generated using 

model (6) (with one auxiliary variable and constant) with parameters computed 

based on real population data and random components with the following 

distributions: in the model denoted in the simulation as NN case – normal 

distribution of  both idv  and ,idje  UU – uniform distribution of both idv  and ,idje  

EE – shifted exponential distribution of both idv  and .idje  What is more, to study 

the problem of model misspecification, 10 000 population are generated based 

on modified model (6), where instead of the auxiliary variable its natural 

logarithm is used, where random components have the following distributions: 

NNm case – normal distributions, UUm – uniform distributions, EEm – shifted 

exponential distributions. 

Selected results are presented in the table 1. Design biases of all of 

estimators/predictors are around zero. The design accuracy of the Pseudo-

EBLUP (P-EBLUP) is on average better than the design accuracy of GREG2 but 

on average worse than the design accuracy of GREG1. The results of model-

based simulations are similiar for all of models (hence, in the table 1 results for 

one model are presented – EEm model). On average over domains, the smallest 

values of absolute model biases and the smallest values of model-RMSEs for all 

of models are observed for P-EBLUP. 

 
Table 1. Selected results of the Monte Carlo simulations 

Domain: 
Result: Estimator: 

1 2 3 4 5 6 

GREG1 –0,57 0,58 –0,31 –0,78 0,92 –0,26 

GREG2 0,30 –0,70 0,06 0,03 –0,25 0,52 
Relative design-biases 

(in %) 
P-EBLUP 2,94 2,48 –0,09 –2,92 0,91 –0,96 

GREG1 8,67 5,65 4,45 5,71 9,24 5,28 

GREG2 21,43 20,33 18,98 21,10 27,22 23,27 
Relative design-RMSE 

(in %) 
P-EBLUP 18,78 18,91 18,40 12,50 23,11 15,55 

GREG1 33,05 22,90 32,08 34,26 13,59 23,98 

GREG2 41,67 9,82 43,10 25,98 –2,76 39,05 
Relative model-biases 

(in %) for EEm model 
P-EBLUP 4,47 1,17 8,66 –13,52 –2,51 1,97 

GREG1 33,40 23,42 32,82 34,74 15,18 25,08 

GREG2 41,95 10,99 43,66 26,61 7,29 39,74 
Relative model-RMSE 

(in %) for EEm model 
P-EBLUP 10,77 8,10 16,67 18,15 13,91 14,30 
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V. CONCLUSION 

  

In the paper Pseudo-EBLUP is proposed for longitudinal data. Its design- 

and model-accuracy is studied in Monte Carlo simulation analysis based on real 

data. The prediction accuracy of the predictor is on average better in the 

simulation comparing with both considered calibration estimators but values of 

design MSEs are on average between the design MSEs of the considered 

calibration estimators. 
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O PREDYKTORZE PSEUDO-EBLUP DLA PEWNEGO MODELU NADPOPULACJI 

ZE ZMIENNYMI DODATKOWYMI DLA DANYCH WIELOOKRESOWYCH  

 

Rozwa any jest problem modelowania profili wielookresowych zak adaj c, e zarówno 

populacja jak i przynale no  elementów populacji do podpopulacji mo e zmienia  si  w czasie. 

Dla danych przekrojowo-czasowych zak adamy pewien model mieszany ze sk adnikami losowymi 
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specyficznymi dla podpopulacji i elementów populacji (por. Verbeke, Molenberghs, 2000; 

Hedeker, Gibbons, 2006), który jest przypadkiem szczególnym ogólnego mieszanego modelu 

liniowego. Zostan  przedstawione pseudo-empiryczne najlepsze liniowe nieobci one predyktory 

wynikaj ce z podej cia mieszanego (wspomaganie modelami nadpopulacji), ich b dy 

redniokwadratowe i ich estymatory. W badaniu symulacyjnym ich dok adno  zostanie 

porównana z pewnymi estymatorami kalibrowanymi równie  wynikaj cymi z podej cia 

mieszanego.  


