Show simple item record

dc.contributor.authorDzik, Wojciech
dc.contributor.authorRadeleczki, Sándor
dc.date.accessioned2017-07-10T12:08:40Z
dc.date.available2017-07-10T12:08:40Z
dc.date.issued2016
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/22189
dc.description.abstractWe show that adding compatible operations to Heyting algebras and to commutative residuated lattices, both satisfying the Stone law ¬x ⋁ ¬¬x = 1, preserves filtering (or directed) unification, that is, the property that for every two unifiers there is a unifier more general then both of them. Contrary to that, often adding new operations to algebras results in changing the unification type. To prove the results we apply the theorems of [9] on direct products of l-algebras and filtering unification. We consider examples of frontal Heyting algebras, in particular Heyting algebras with the successor, and G operations as well as expansions of some commutative integral residuated lattices with successor operations.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;3/4
dc.subjectfiltering unificationen_GB
dc.subjectcompatible operationen_GB
dc.subjectintuitionistic logicen_GB
dc.subjectHeyting algebraen_GB
dc.subjectresiduated latticeen_GB
dc.titlePreserving Filtering Unification by Adding Compatible Operations to Some Heyting Algebrasen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016en_GB
dc.page.number[257]-267
dc.contributor.authorAffiliationUniversity of Silesia, Institute of Mathematics
dc.contributor.authorAffiliationUniversity of Miskolc, Institute of Mathematics
dc.identifier.eissn2449-836X
dc.referencesF. Baader, S. Ghilardi, Unification in Modal and Description Logics, Logic Journal of the IGPL, vol. 19 (6), (2011), pp. 705–730.en_GB
dc.referencesF. Baader, W. Snyder, Unification Theory. in A.Robinson, A.Voronkov, (eds.) Handbook of Automated Reasoning, Elsevier Science Publisher, (2001).en_GB
dc.referencesS. Burris, H. P. Sankappanavar, A Course in Universal Algebra, The Millennium Edition, Burris, S., Sankappanavar, H. P.en_GB
dc.referencesX. Caicedo, R. Cignoli, Algebraic Approach to Intuitionistic Connectives Journal of Symbolic Logic 66 (2001), pp. 1620–1636.en_GB
dc.referencesJ. L. Castiglioni, M. Menni and M. Sagastume, Compatible operations on commutative residuated lattices, Journal of Applied Non-Classical Logics 18 (2008), pp. 413–425.en_GB
dc.referencesJ. L. Castiglioni, H. J. San Martn, Compatible Operations on Residuated Lattices, Studia Logica 98 (2011), pp. 203–222.en_GB
dc.referencesP. Cintula, G. Metcalfe, Admissible rules in the implicationnegation fragment of intuitionistic logic, Annals of Pure and Applied Logic 162, 2 (2010), pp. 162–171.en_GB
dc.referencesW. Dzik, Splittings of Lattices of Theories and Unification Types, Contributions to General Algebra 17 (2006), pp. 71–81.en_GB
dc.referencesW. Dzik, S. Radeleczki, Direct Product of l-algebras and Unification. An Application to Residuated Lattices, Journal of Multiple-valued Logic and Soft Computing 28(2-3) (2017), pp. 189–215.en_GB
dc.referencesL. Esakia, The modalized Heyting calculus: a conservative modal extension of the Intuitionistic Logic, Journal of Applied Non-Classical Logics 16, No. 3–4 (2006), pp. 349–366.en_GB
dc.referencesN. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices. An Algebraic Glimpse at Substructural Logics, Studies in logic and the foundations of mathematics, Vol 151, Amsterdam: Elsevier, 2007.en_GB
dc.referencesS. Ghilardi, Unification through Projectivity, Journal of Symbolic Computation 7 (1997), pp. 733–752.en_GB
dc.referencesS. Ghilardi, Unification in Intuitionistic Logic, Journal of Symbolic Logic 64(2)(1999), pp. 859–880.en_GB
dc.referencesS. Ghilardi, L. Sacchetti, Filtering Unification and Most General Unifiers in Modal Logic, Journal of Symbolic Logic 69 (2004), pp. 879–906.en_GB
dc.referencesS. Ghilardi, Best Solving Modal Equations, Annals of Pure and Applied Logic 102 (2000), pp. 183–198.en_GB
dc.referencesT. Kowalski, H. Ono, Residuated lattices: An algebraic glimpse at logics without contraction, (2001), manuscript.en_GB
dc.referencesA. V. Kuznetsov, On intuitionistic propositional provability calculus, Soviet Math. Doklady 32 (1985), pp. 27–30.en_GB
dc.referencesA. Wronski, On factoring by compact congruences in algebras of certain verieties related to the intuitionistic logic, Bulletin of the Section of Logic 28 (1986), pp. 48–50.en_GB
dc.contributor.authorEmailwojciech.dzik@us.edu.pl
dc.contributor.authorEmailmatradi@uni-miskolc.hu
dc.identifier.doi10.18778/0138-0680.45.3.4.08
dc.relation.volume45en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record