Pokaż uproszczony rekord

dc.contributor.authorStach, Alfred
dc.contributor.authorWysocka, Patrycja
dc.date.accessioned2015-07-08T10:00:24Z
dc.date.available2015-07-08T10:00:24Z
dc.date.issued2014
dc.identifier.citationStach A., Wysocka P., 2014, Zastosowanie metody krigingu Poissona w badaniach rozkładu przestrzennego problemów społecznych na przykładzie Poznania, Acta Universitatis Lodziensis 16, 169-188pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/10674
dc.description.abstractAnaliza przestrzenna danych społecznych wymaga niejednokrotnie odfiltrowania wpływu nierealnych, odstających danych. Celem pracy jest omówienie podstaw teoretycznych bardzo efektywnej, a mało znanej metody do tego służącej ‒ krigingu Poissona. Ilustrację praktyczną jej zalet przedstawiono na przykładzie identyfikacji obszarów występowania różnych kategorii problemów społecznych na obszarze Poznania.pl_PL
dc.description.abstractPlanning of social policy it is complicated and multidimensional issue, especially in complex urban structures characteristic for big cities. However econometric indicators of spatial dependence provide us some information about spatial autocorrelation, their do not show the differences in local variability. Geostatistics is an answer for this challenge. This method is not only helpful in more accurate determination of the most important problems but it also enables identification of their location, scale and possible reasons. This paper presents possibilities given by Poisson Kriging for analysis of social problems in urban space. Its was applied in Poznań for identification of neighbourhoods or local communities (related to the basic administrative units called „osiedla”) in which concentration of people needing social help is bigger than population distribution might it suggest. The data used in the analysis was taken from urban centre helping families in difficult social situation (MOPR). They concerns people who received financial support in 2008. The basic information taken into account was their place of residence and the reason for which they received financial aid. MOPR distinguish 13 categories of social problems needing support, including poverty, chronic diseases, alcoholism and domestic violence. 9 473 persons received financial aid in the analysed period of time. Taking into account their families it give us at least 18 264 people struggling with social problems – 3,3% of the city population (545 000 inhabitants). In order to receive comparable measure of issues analysed in urban space, the number of people needing social support must be compared with the population distribution. Thus, information about place of residence of people who receives financial aid was aggregated to bigger areas – 731 regular polygons for which the number of city inhabitants was know. Side length of single polygon was 500 meters. In each polygon data needed also to be age-adjusted. It is very sophisticated task, therefore special script dedicated for ArcGIS was created. The age-adjusted data aggregated in the polygons were bases for main spatial analysis. Application of Poisson Kriging resulted in more precise identification of areas affected by the major social problems in Poznań. Presence of autocorrelation was noticeable in case of majority of analysed social problems. The most common ranges of autocorrelation were 1‒1,2 km (which is similar to the spatial range of single local communities) and 6–6,5 km (the range of single neighbourhoods). Analysis showed that there are some neighbourhoods in Poznań where occurrence of social problems is significantly higher than mean occurrence for the whole city. Presented method enabled smoothing of unreliable, extremely high relative risks values but without loss of the local variability.pl_PL
dc.language.isoplpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis, Folia Geographica Socio-Oeconomica;16
dc.subjectproblemy społecznepl_PL
dc.subjectstruktura społeczno-przestrzennapl_PL
dc.subjectPoznańpl_PL
dc.subjectkriging Poissonapl_PL
dc.subjectsocial problemspl_PL
dc.subjectsocio-spatial structurepl_PL
dc.subjectPoisson kriging methodpl_PL
dc.titleZastosowanie metody krigingu Poissona w badaniach rozkładu przestrzennego problemów społecznych na przykładzie Poznaniapl_PL
dc.title.alternativePoisson kriging as a tool for social problems analysis - Poznań case studypl_PL
dc.typeArticlepl_PL
dc.page.number169-188pl_PL
dc.contributor.authorAffiliationUniwersytet im. Adama Mickiewicza w Poznaniupl_PL
dc.identifier.eissn2353-4826
dc.referencesAli M. i in., 2006, Application of Poisson kriging to the mapping of cholera and dysentery incidence in an endemic area of Bangladesh, „International Journal of Health Geographics, 5, s. 45, http://www.pubmedcentral.nih.gov/articlerender.fcgiartid=161 7092&tool=pmcentrez&rendertype=abstract.pl_PL
dc.referencesAnderson R.N., Rosenberg H.M., 1998, Age Standardization of Death Rates: Implementation of the Year 2000 Standard, „National Vital Statistics Reports”, 47(3).pl_PL
dc.referencesBevan A., Conolly J., 2009, Modelling Spatial Heterogeneity and Nonstationarity in Artifact- Rich Landscapes, „Journal of Archaeological Science”, 36(4), s. 956–964.pl_PL
dc.referencesBuescher P.A., 1997, Problems with rates based on small numbers, [w:] Statistical Primer, North Carolina State Center for Health Statistics, s. 1–7, http://www.schs.state. nc.us/ SCHS/pdf/primer12.pdf.pl_PL
dc.referencesBumpus S., 2012, Analysing and visualising areal crime data. A case study of residential burglary in San Francisco, USA, Master of Science Thesis in Geospatial Technologies, Universidade Nova de Lisboa, http://hdl.handle.net/10362/8316.pl_PL
dc.referencesDavid K., Higgs G., White S., 2003, Socio-Economic Applications in Geographical Information Science, Taylor & Francis, London.pl_PL
dc.referencesDe Oliveira V., 2013, Hierarchical Poisson models for spatial count data, „J. Multivariate Anal.”, 122, s. 393–408pl_PL
dc.referencesDe Oliveira V., 2014, Poisson kriging: A closer investigation, „Spatial Statistics”, 7, s. 1–20.pl_PL
dc.referencesEbenezer B., Ebenezer O.S., Linda O., 2013, Application of Area to Point Kriging to Buruli Ulcer Incidence in Ashanti and Brong Ahafo Regions of Ghana, Geoinfor. Geostat: An Overview, 1:1.pl_PL
dc.referencesGoodchild M.F., Janelle D.G., 2004, Spatialy integrated social science, Oxford University Press, Inc., New Yorkpl_PL
dc.referencesGoovaerts P., 1997, Geostatistics for Natural Resources Evaluation., Oxford University Press, Inc., New York.pl_PL
dc.referencesGoovaerts P., 2005, Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging, „International Journal of Health Geographics”, 4(1), s. 31, http://www.pubmedcentral.nih.govarti clerender.fcgi?artid=1360096&tool=pmcentrez&rendertype=abstract.pl_PL
dc.referencesGoovaerts P., 2006, Geostatistical Analysis of Disease Data: Accounting for Spatial Support and Population Density in the Isopleth Mapping of Cancer Mortality Risk Using Area to Point Poisson Kriging, „International Journal of Health Geographics”, 5(52).pl_PL
dc.referencesGoovaerts P., 2008, Accounting for rate instability and spatial patterns in the boundary analysis of cancer mortality maps, „Environmental and Ecological Statistics”, 15, s. 421–446.pl_PL
dc.referencesGoovaerts P., Gebreab S., 2008, How does Poisson kriging compare to the popular BYM model for mapping disease risks?, „International Journal of Health Geographics”, 7(1), s. 6, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2276482&tool =pmcentrez&rendertype=abstract.pl_PL
dc.referencesIsaaks E.H., Srivastava R.M., 1989, Applied Geostatistics, Oxford University Press, Inc., New Yorkpl_PL
dc.referencesJargowsky P.A., Kim J., 2005, A Measure of Spatial Segregation: The Generalized Neighborhood Sorting Index A Measure of Spatial Segregation, National Poverty Center Working Paper Series, http://www.nationalpovertycenter.net/publications/ working_papers/.pl_PL
dc.referencesJenks G.F., 1967, The Data Model Concept in Statistical Mapping, „International Yearbook of Cartography”, 7, s. 186‒190.pl_PL
dc.referencesKafadar K., 1994, Choosing among two-dimensional smoothers in practice, „Computational Statistics and Data Analysis”, 18, s. 419–439.pl_PL
dc.referencesKerry R. i in., 2010, Applying Geostatistical Analysis to Crime Data: Car-Related Thefts in the Baltic States, „Geographical Analysis”, 42(1), s. 53–77, http://doi.wiley.com/ 10.1111/j.1538-4632.2010.00782.xpl_PL
dc.referencesKerry R. i in., 2012, A comparison of multiple indicator kriging and area-to-point Poisson kriging for mapping patterns of herbivore species abundance in Kruger National Park, South Africa, „International Journal of Geographical Information Science”.pl_PL
dc.referencesKober K. i in., 2010, An analysis of the numbers and distribution of seabirds within the British Fishery Limit aimed at identifying areas that qualify as possible marine SPAs.pl_PL
dc.referencesKrivoruchko K., Gribov A., Krause E., 2011, Multivariate areal interpolation for continuous and count data, „Procedia Environ. Sci.”, 3, s. 14–19.pl_PL
dc.referencesMonestiez P., Dubroca L., Bonnin E., Durbec J.P., Guinet C., 2005, Comparison of Model Based Geostatistical Methods in Ecology: Application to Fin Whale Spatial Distribution in Northwestern Mediterranean Sea, [w:] Leuanghton O., Deutsch C.V. (red.), „Geostatistics Banff 2004”, 2, s. 777‒786.pl_PL
dc.referencesNaeimeh S.A. i in., 2013, Area-to-Area Poisson Kriging Analysis of Mapping of County- Level Esophageal Cancer Incidence Rates in Iran, „Asian Pacific Journal of Cancer Prevention”, 14, s. 11–13.pl_PL
dc.referencesOliver M.A. i in., 1998, Binomial cokriging for estimating and mapping the risk of childhood cancer, „IMA Journal of Mathematics Applied in Medicine and Biology”, 15, s. 79–297.pl_PL
dc.referencesPardo-Igúzquiza E., 1999, VARFIT: a Fortran-77 program for fitting variogram models by weighted least squares, „Computers and Geosciences”, 25, s. 251‒261pl_PL
dc.referencesParker R.N., Asencio E.K., 2008, GIS and Spatial Analysis for the Social Sciences Coding, Mapping and Modeling, Taylor & Francis, New York.pl_PL
dc.referencesParysek J.J., Mierzejewska L., 2006, City Profile Poznań, „Cities”, 23(4), s. 291–305, http://linkinghub.elsevier.com/retrieve/pii/S0264275106000291pl_PL
dc.referencesPfeiffer D.U. i in., 2008, Spatial Analysis in Epidemiology, Oxford University Press, Oxford, UKpl_PL
dc.referencesReardon S.F., Sullivan D.O., 2004, Measure of spatial segregation, „Sociological Methodology”, 34(1), s. 121–162pl_PL
dc.referencesShao C.Y., Mueller U., Cross J., 2009, Area-to-point Poisson kriging analysis for lung cancer incidence in Perth areas, [w:] 18th World IMACS/MODSIM Congress 13‒17 July 2009, Cairns, Australia, s. 1–7.pl_PL
dc.referencesTalbot T.O. i in., 2000, Evaluation of spatial filters to create smoothed maps of health data, „Statistics in Medicine”, 19, s. 2399–2408.pl_PL
dc.referencesWaller L.A., Gotway C.A., 2004, Applied Spatial Statistics for Public Health Data, John Wiley & Sons, Inc., Hoboken, NJ, USA.pl_PL
dc.referencesWang F., 2004, Geographic Information Systems and Crime Analysis, [w:] Wang F. (red.), IGI Global, http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10. 4018/978-1-59140-453-8.pl_PL
dc.referencesWilson W.J., 1987, The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy, Bridge G., Watson S. (red.), University of Chicago Press, http://www. amazon.com/Truly-Disadvantaged-Underclass-Public-Policy/dp/0226901319.pl_PL
dc.referencesWilson W.J., 2012, The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy, Second Edition II, University of Chicago Press, USA.pl_PL
dc.referencesWong D.W.S., 1999, Geostatistics as measures of spatial segregation, „Urban Geography”, 20(7), s. 635–647, http://bellwether.metapress.com/openurl.asp?genre=article &id=doi:10.2747/0272-3638.20.7.635.pl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord