Pokaż uproszczony rekord

dc.contributor.authorGerstenkorn, Tadeusz
dc.date.accessioned2015-12-09T09:16:06Z
dc.date.available2015-12-09T09:16:06Z
dc.date.issued2015
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/15312
dc.description.abstractThe probability distribution of a random variable can be characterized by some numbers called parameters of the distribution. Moments belong to the most frequently used parameters. We focus on the Pólya distribution because we can easily obtain from it, as special cases, some distributions important in statistics such as: binomial, negative binomial and Poisson (the last one in the limit procedure). In 1972 G. Mühlbach gave very interesting formulae for the moments of the Pólya distribution. The author did not investigate the evaluation of the numerical efficacy of the formula for the moments. We will show that it is possible to demonstrate this formula in a simpler form, which is important from practical point of view.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;314
dc.subjectmoments of the probability distributionpl_PL
dc.subjectPólya probability distributionpl_PL
dc.titleRemarks on the Formula for the Moments of the Pólya Probability Distributionpl_PL
dc.title.alternativeUwagi o wzorze na momenty rozkładu prawdopodobieństwa G. Pólyipl_PL
dc.typeArticlepl_PL
dc.rights.holder© Copyright by Uniwersytet Łódzki, Łódź 2015pl_PL
dc.page.number[9]-14pl_PL
dc.contributor.authorAffiliationUniversity of Łódźpl_PL
dc.identifier.eissn2353-7663
dc.referencesGerstenkorn T., Śródka T. (1972), Kombinatoryka i rachunek prawdopodobieństwa, PWN, Warszawa.pl_PL
dc.referencesKaufmann A. (1968), Introduction à la Combinatorique en Vue des Applications, Paris, Dunod.pl_PL
dc.referencesŁukasiewicz J., Warmus M. (1956), Metody numeryczne i graficzne, Część I, Warszawa, PWN.pl_PL
dc.referencesMühlbach G. (1972), Rekursionsformeln für die zentralen Momente der Pólya- und der Beta- Verteilung, Metrika 19, Fasc. 2–3, 171–177.pl_PL
dc.contributor.authorEmaile-mail: tadger@math.uni.lodz.plpl_PL
dc.identifier.doi10.18778/0208-6018.314.02
dc.relation.volume3pl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord